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Abstract

How are financial markets responding to anticipated climate-driven wildfire risk increases?

Combining high-resolution meteorological predictions and land use pattern maps with de-

tailed US municipal bond data, this paper finds that municipalities facing higher future

wildfire risk increases are already having to pay substantially higher borrowing costs as

a result. A one standard deviation increase in future wildfire exposure is associated with

a 23-basis point rise in school district bond spreads, corresponding to 42% of the sample

mean. Borrowing cost impacts are significantly larger in areas with higher minority pop-

ulation shares and heavier reliance on local revenue sources.
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1 Introduction

Wildfires are imposing increasing costs on the US economy. In 2018 alone, the direct costs from

wildfire events, measured by the sum of insured and estimated uninsured losses, amounted to

$30 billion (in 2024 USD), accounting for 26% of the total damages incurred from climate-

related natural disasters in the US (NOAA, 2024). Even costlier are the estimated health

impacts of wildfire smoke, which include over 15,000 excess deaths per year (Qiu et al., 2024),

over 3,000 additional emergency department visits (Heft-Neal et al., 2023), and significant

increases in hospitalizations (Gould et al., 2024). Importantly, the potential for wildfires is

expected to rise substantially in many parts of the US due to climate change (Brown et al.,

2021). Accordingly, there is growing public concern about the fiscal implications of increasing

wildfire risks through channels such as firefighting costs or healthcare spending both at the

federal (CBO, 2022; OMB, 2022) and local levels. Indeed, the likelihood of municipal budget

deficits has been found to increase by 25 percentage points following historic fire events (Liao

and Kousky, 2022). Despite this growing evidence on their potential economic importance,

wildfires have received comparatively little attention in the academic literature on the social

costs and financial asset capitalization of climate change risks.1 Recent industry reports also

indicate continued skepticism as to whether climatic risks are reflected in municipal bond

prices (NYSE: ICE, 2022).

This paper presents what is to the best of our knowledge the first dedicated academic

analysis of the capitalization of future wildfire risk changes in US financial markets, specif-

ically municipal bonds.2 We exploit high-resolution meteorological predictions and granular

variations in land use patterns to study whether municipal bond markets reflect climate-

induced wildfire risk changes. Building upon the panel regression approach developed by

prior literature investigating the capitalization of sea level rise risks into municipal bonds

(Goldsmith-Pinkham et al., 2023), we focus on school district bonds in the secondary market.

1Wildfire impacts are typically not modeled in climate-economic assessment models and feature limited reflection in leading
recent empirical and policy estimates of the social cost of carbon (see, e.g., discussion in EPA 2023).

2Smull et al. (2023) study the cross-sectional relationship between municipal bond spreads and a composite commercial climate
risk index from Intercontinental Exchange, which includes wildfires jointly with hurricanes, flooding, and other risk factors.
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A majority of fixed income securities issued by school districts are general obligation bonds

backed by property taxes, which establishes a direct link between local economic conditions

and the ability to service debt. Our outcome variables of interest are municipal bond spreads

defined by the difference between a bond’s yield-to-maturity and a maturity-matched risk-free

benchmark yield.

To identify the association between future wildfire risks and credit spreads, we leverage

three sources of variation: (1) varying term structures of bonds issued within a given school

district, (2) changes in local wildfire risks over time, and (3) increased awareness regarding

the perils posed by climate change. Many school districts issue bonds with varying maturities

at issuance. If the market is capitalizing future wildfire risks, investors would consider the

risk trajectory of a district and price bonds based on the anticipated risk leading up to

their maturity dates. Our central estimation regresses municipal bond spreads on historical

and future measures of local economic wildfire risk (quantified based on both local physical

wildfire risk and the number of housing units in the Wildland Urban Interface where residential

structures meet vegetation) and a rich set of control variables. Our controls include bond

characteristics as well as district-by-month fixed effects (e.g., Santa Barbara Unified School

District in May 2024) and district-by-maturity-date-group fixed effects (e.g., Santa Barbara

Unified School District bonds maturing in 2040-44). District-by-month fixed effects help

account for economic factors that may be correlated with trends in both wildfire risks and

the creditworthiness of a district, whereas district-by-maturity-date-group fixed effects help

control for the general effects of future maturity dates on credit spreads within each district.

Our central finding is that future wildfire risks appear to be increasingly capitalized into

US municipal bond markets. We observe both statistically and economically significant effects

of future wildfire risk increases on bond spreads, with a one standard deviation increase in

future wildfire exposure leading to a 23-basis point rise in school district bond spreads post-

2014, which is equivalent to 42% of the mean spreads in the sample. The estimated impacts

are robust to other estimation methods, spatial coverage, and alternative wildfire measures.
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The results are also robust to excluding communities directly affected by wildfire events over

our sample period. Delving into heterogeneity, we observe notably higher wildfire risk impacts

in districts heavily reliant on local revenue sources post-2014, consistent with a mechanism via

local economies and property values, for which we provide additional suggestive evidence as

well.3 We also find that the capitalization of wildfire risks is more pronounced in districts with

larger non-white population shares even after accounting for income. In sum, our results indi-

cate that anticipated future wildfire risk changes are already having economically significant

impacts on financial markets, municipal borrowing costs, and vulnerable communities.

This paper relates to four main strands of research. First, this analysis contributes to

our understanding of how climate risks are capitalized into asset prices. While a larger set

of studies has examined the capitalization of “climate risks,” broadly defined to include,

e.g., regulatory risks or present-day natural disaster risks (see, e.g., Giglio et al. 2021 and

Campiglio et al. 2023 for reviews), we specifically contribute to a more nascent body of evidence

on the capitalization of not only current but also future risk changes from physical climate

change. For housing as an asset class, several studies have found evidence of at least partial

capitalization of future sea level rise (Bernstein et al., 2019; Baldauf et al., 2020; Bakkensen

and Barrage, 2022), though some disagreement remains (Murfin and Spiegel, 2020). Certain

future climate risks have also been found to be partially capitalized into equity markets (e.g.,

drought trends as in Hong et al. 2019, heat stress as in Acharya et al. 2022, and general climate

risk indices as in Ling et al. 2023), corporate bonds markets (e.g., heat stress as in Acharya et

al. 2022), and land markets (e.g., extreme temperature and precipitation as in Severen et al.

2018). Most closely related to our analysis is the capitalization of future climate risks in the

US municipal bond markets, which has been observed for future sea level rise (Painter, 2020;

Goldsmith-Pinkham et al., 2023) and future heat stress (Acharya et al., 2022). Several studies

have further documented associations between general climate risk indices from proprietary

sources and both US municipal (Smull et al., 2023)4 and sovereign (Beirne et al., 2021; Cevik

3In the appendix, we document a negative correlation between housing values and future wildfire risk increases in our sample.
4Based on a cross-sectional analysis, they study the secondary market using model-generated spreads from Bloomberg’s Evalu-

ated Pricing Service as of April 27, 2022, while their primary market analysis focuses on observed spreads derived from transactions
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and Jalles, 2022) borrowing costs.5 To the best of our knowledge, this paper is the first to

demonstrate the capitalization of anticipated wildfire risk changes as such into asset prices.

Second, and closely related, this analysis adds to a nascent body of work demonstrating the

capitalization of current wildfire risks into financial markets, which to date includes option

prices (Ouazad, 2022), prices of mortgage-backed securities (Kahn et al., 2024), property

insurance premiums (Boomhower et al., 2024), and bank portfolios (Ouazad and Kahn, 2022).

Several recent studies have also used broad measures of historic natural disaster exposure

that may include wildfires to demonstrate the overall impacts on financial market outcomes,

including insurers’ stock returns (Jung et al., 2023) and municipal bond returns (Auh et al.,

2022).6 We contribute to this literature by studying the municipal bond pricing impacts of

current and climate-driven future wildfire risks.

Third, this paper relates to a relatively new body of literature that quantifies the economic

impacts of wildfires. The literature on environmental economics has quantified the direct

impacts of historic wildfire and smoke events on outcomes such as structure survival rates

(Baylis and Boomhower, 2022), employment and income (Borgschulte et al., 2022; Walls and

Wibbenmeyer, 2023; Roth Tran and Wilson, 2023), local business activities (Addoum et al.,

2024a), crop yields (Behrer and Wang, 2024), student test scores (Wen and Burke, 2022),

and outdoor recreational activities (Gellman et al., 2023), in addition to well-established

adverse health impacts (Wen et al., 2023; Qiu et al., 2024). The literature on consumer

finance has recently quantified the direct costs of wildfire events on household balance sheets

through consumer credit outcomes (McConnell et al., 2021), mortgage repayment (An et al.,

2024; Biswas et al., 2023; Issler et al., 2024), and student loans (Cornaggia et al., 2023a).

Finally, several studies on real estate markets have linked present-day wildfire risks to housing

prices using spatially discontinuous hazard map updates (Ma et al., 2024; Garnache, 2023),

at issuance. In contrast, our analysis adopts a panel regression approach using observed municipal credit spreads in the secondary
market.

5Several recent studies, such as Mallucci (2022) and Phan and Schwartzman (2023), have used quantitative models to project
the impacts of changing climate risks on sovereign bond markets, focusing on tropical cyclone risks in the Caribbean countries
and Mexico, respectively.

6These studies use the Spatial Hazard Events and Losses Database for the United States (SHELDUS), which encompasses
various natural disaster events including but not limited to wildfire events. Globally, other studies have considered the impacts
of disasters such as floods on sovereign bond markets (Klomp, 2017).
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historic wildfire events (McCoy and Walsh, 2018), and exposure to smoke plumes (Huang and

Skidmore, 2024; Addoum et al., 2024b).

A fourth related strand is the emerging literature examining the fiscal perils associated

with climate-related disasters. For example, Jerch et al. (2023) document the adverse impacts

of hurricane strikes on several US municipal fiscal outcomes and note that these impacts are

larger in communities with larger non-white population shares. Our findings of unequal future

wildfire risk capitalization add to these insights. While a growing literature investigates the

impacts of different climatic risks,7 there exists a distinct concern regarding the escalating

fiscal burden resulting from wildfire risks (CBO, 2022; OMB, 2022). Recent studies have eval-

uated rising expenditures on specific programs directly related to fire events, such as wildfire

suppression costs (Wibbenmeyer et al., 2019; Plantinga et al., 2022; Baylis and Boomhower,

2023) and Medicare spending (Miller et al., 2017). Notably, Liao and Kousky (2022) focus

on the impact of historic fire events on aggregated municipal fiscal outcomes. But none of

them explores the rising borrowing costs that may arise due to wildfire risk. Our analysis

uncovers a potential vicious cycle in which school districts facing larger future wildfire risks

could experience lower provision of public goods due to increasing borrowing costs. Reduced

fiscal space could, in turn, hamper future disaster recovery (Phan and Schwartzman, 2023) or

lead to further unintended consequences, such as hindered human capital accumulation (Park

et al., 2020; Biasi et al., 2024).

The remainder of this paper proceeds as follows. Section 2 delineates our methodology for

quantifying future economic wildfire risk. Additionally, we describe the municipal bond data

and historic fire perimeters. In Section 3, we discuss our identification strategy and empirical

results on the capitalization of future wildfire risk changes on municipal credit spreads. Section

4 concludes.

7In the United States, this literature has considered fiscal impacts of hurricanes (Deryugina, 2017; Jerch et al., 2023), temper-
ature extremes (Barrage, 2024), and general disasters (Miao et al., 2018).
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2 Data

2.1 Economic wildfire risks

From an economic perspective, wildfire risk encompasses two factors: physical wildfire risk,

based on meteorological conditions, and the presence of valuable assets, such as residential

structures in proximity to vegetative fire fuels. To quantify wildfire potential based on this

intuition, we rely on two data sources. First, Brown et al. (2021) compute the Keetch–Byram

Drought Index (KBDI) across the contiguous United States, which is calculated at a spatial

resolution of 12 km for both historic (1995-2004) and mid-century (2045-2054) periods. It is

based on weather predictions from a climate model under a high emissions scenario.8 The

KBDI is a widely-used metric for assessing meteorological conditions related to wildfire events

using factors such as daily maximum temperature, daily precipitation, and annual accumulated

precipitation (Keetch and Byram, 1968).

The US Global Change Research Program (USGCRP) divides the contiguous United States

into seven regions to evaluate region-specific climate risks in its National Climate Assessment:

Northwest (NW), Southwest (SW), Northern Great Plains (NGP), Southern Great Plains

(SGP), Midwest (MW), Northeast (NE), and Southeast (SE) (USGCRP, 2017).9 We restrict

our sample to regions that have historically experienced KBDI values indicative of a high

potential for wildfire events (> 400 in the period from 1995-2004, Liu et al. 2010), specifically

the NW, SW, and SGP regions. We provide a robustness check on our main regression by in-

cluding other regions. To count the number of housing units exposed to different KBDI levels,

we overlay 12 km resolution KBDI polygons with 2010 US census blocks, which represent the

smallest geographical units used by the Census Bureau for housing data tabulation during its

decennial census.

8Brown et al. (2021) use the Weather Research and Forecast (WRF) simulations driven by Community Climate System Model
(CCSM) version 4 under the Representative Concentration Pathway 8.5 (RCP 8.5), which assumes high levels of greenhouse gas
emissions by the end of this century (Riahi et al., 2011).

9See Table A1 for the grouping of states by region.

6



Second, Radeloff et al. (2018) categorize US census blocks into two groups based on whether

their residential structures intersect with wildland vegetation, using housing data from the

2010 Decennial Census and the National Land Cover Data from the US Geological Survey.

This classification, known as the Wildland-Urban Interface (WUI), helps local communities

identify areas where wildfires can pose risks due to their proximity to vegetative fuels. To

link meteorological conditions relevant to wildfire potential with available fuel sources, we

integrate WUI status into the KBDI assessment. For example, a census block in downtown

Los Angeles may exhibit a high level of KBDI by mid-century. However, accounting for its

WUI status could reduce its fire potential to zero, as there is little flammable vegatation.10

To evaluate the fire risk of each bond issuer, we aggregate the KBDI and WUI data from

the census block level to the school district level in the following way. For a given school district

d, let Nd represent the number of census blocks intersecting with the district. Within each

block i, data on the number of housing units (HU) and the WUI classification is available. We

compute the weighted KBDI for both historic and mid-century periods, using the number of

housing units in the wildland-urban interface areas as weights: for p ∈ {historic,mid-century},

Weighted KBDId(p) =

Nd∑
i=1

[
HUi∑Nd

j=1HUj

×KBDIi(p)× I(i = WUI)

]
. (1)

Figure 1 maps the historic and mid-century weighted KBDI, along with their difference, in the

Northwestern, Southwestern, and Southern Great Plains regions. In general, the Southwestern

region exhibits high risk levels for both the historical and mid-century periods. But the

Southern Great Plains area additionally stand out when considering the difference. We also

consider alternative measures of future wildfire potential from two additional sources.11

10Indeed, Gannon and Steinberg (2021) find a positive correlation between fire occurrences and corresponding risk measures
on a global scale, which take into account both meteorological conditions and land cover but at a coarser resolution (1/4◦) than
Brown et al. (2021).

11Kearns et al. (2022) compute the cumulative likelihood of wildfire occurrences exceeding 14% over the next 30 years relative
to 2023 using the RCP 4.5 scenario. ANL (2023) calculates the ensemble mean of the seasonal average daily Fire Weather Index
(FWI) — a wildfire risk index developed by the Canadian Forest Service — using Argonne’s downscaled 12 km climate data
under RCP 8.5. We find a strong correlation of 0.59 and 0.70 at the school district level in our sample between the difference in
the weighted KBDI and the two alternative measures, respectively. We provide a robustness check using the latter data for our
main regression. For details, refer to Appendix A.
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[ Figure 1 Here ]

2.2 Bond transactions and characteristics

We use the Refinitiv Data Platform APIs to extract bond characteristics of US school districts.

We filter municipal bonds where their purpose is classified as “Primary or Secondary Educa-

tion” and their federal tax status is marked as “Exempt.” Our secondary market transaction

data are from the Municipal Securities Rulemaking Board (MSRB) Academic Historical Trans-

action Data, covering trades from 2005 to 2020 (our data access cutoff year). We then merge

these datasets using the 9-digit Committee on Uniform Securities Identification Procedures

(CUSIP) number.

Municipal bond issuers often pre-refund their bonds prior to their call date by issuing

new debt and holding the proceeds in US government securities to cover remaining payments

until their call date. We exclude transactions of bonds labeled as “pre-refunded,” as they

are essentially risk-free (Chalmers, 1998). The changes in sample size resulting from this

and other data processing steps are delineated in Table 1. Following Green et al. (2010),

we address clerical errors by excluding trades without prices, those occurring on holidays or

weekends, those priced above $150 or below $50 per $100 par value, and those with coupon

rates exceeding 20%. To ensure a sufficient level of liquidity, we limit our sample to bonds that

were traded at least 10 times during our sample period (Schwert, 2017). We remove trades

during the first three months after the issuance and during the last year before the maturity as

these transactions are noisy (Green et al., 2007). We exclude trades with a time-to-maturity

greater than 30 years as our benchmark yield curve for credit spread calculation spans from

1 to 30 years.

In municipal bond markets, trades occur infrequently, and intraday price fluctuations can

be substantial compared to changes in fundamentals due to differing terms among various

types of investors (Green et al., 2007). Therefore, following Green et al. (2010), we aggregate

transaction data on a daily frequency by computing the midpoint between the lowest price at
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which dealers sell to customers and the highest price at which dealers purchase from customers.

If both of them are not observed on a given day, we use the average price of all interdealer

transactions. If neither method is applicable, we exclude the data (Schwert, 2017). We

construct a monthly panel by taking the arithmetic mean of daily fundamental prices in a

given month and compute the yield to maturity. To calculate credit spreads, we match the

yield to maturity of a bond with its maturity-matched Municipal Market Analytics (MMA)

municipal yield benchmarks obtained from the Bloomberg Terminal, based on the last date a

trade occurred each year-month following Goldsmith-Pinkham et al. (2023).

We then match bond data to wildfire risk data. To tabulate wildfire risks by school districts,

we use the Institute of Education Sciences National Center for Education Statistics (NCES)

school district boundaries that can be uniquely identified with Local Education Agency Iden-

tification (LEAID) numbers. We match the LEAID with the 6-digit CUSIP, which uniquely

corresponds to bond issuers. Details of our name matching procedure are provided in the

appendix B.

In our baseline regression, we account for potential countywide interdependence in local

economic conditions by clustering standard errors at the county level. But some school districts

in the sample overlap more than one county. We overlay the NCES school district boundaries

with the US Census county shapefiles to identify their geographic relation in the 2010 vintage.

We then restrict our sample to bonds issued in counties that contain more than one district

without overlaps. We provide a robustness check on our main regression by including bonds

issued in school districts that span across two counties and clustering standard errors at the

district level.

2.3 Maturity year-matched future wildfire risks

In contrast to sea level rise, wildfires pose risks both in the near and far future. Abatzoglou and

Williams (2016) find that climate change has heightened fuel aridity across Western US forests

from 1979 to 2015, correlating with increased wildfire occurrences. Additionally, Brown et al.
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(2021) observe a rising trend in annual mean KBDI over forested regions in the Southwestern

and Northwestern US since 1982 as well. Both indicate a persistent drying trend, which could

potentially exacerbate fire activities, even in the near future. Appendix Figure A1 displays

the distribution of time-to-maturity in years for the bonds traded each year. The maturity

calendar dates in the sample range from 2006 to 2051. To leverage the variation in fire risks

over time within a district, we match wildfire risks based on the maturity date of a bond.

We first group maturity calendar dates into intervals of 5 years. For a bond b issued by a

district d, let m(b) denote the group to which its maturity calendar date belongs:

m(b) =



0 if its maturity calendar date falls between 2005 and 2009,

1 if its maturity calendar date falls between 2010 and 2014,

· · ·

8 if its maturity calendar date is after 2045.

(2)

We then interpolate the weighted KBDI using a stepwise function with equal steps from the

historic (1995-2004) to mid-century (2045-2054) levels. For a bond b issued by a district d,

Weighted KBDId,m(b) = Weighted KBDId(history)

+
[
Weighted KBDId(mid-century)−Weighted KBDId(history)

]
× m(b)

8
. (3)

We then define the maturity-calendar-date-group-matched wildfire risk change as the differ-

ence between the maturity-calendar-date-group-matched interpolated value and the historical

level:

∆Fired,m(b) = Weighted KBDId,m(b) −Weighted KBDId(history). (4)

We conduct a robustness check on our main regression by varying the step size from 5 years

to 2 and 8 years.

Table 1 summarizes the sample construction and provides summary statistics.

[ Table 1 Here ]
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After winsorizing at the 1% level, spreads vary from -61.16 to 279.62 basis points. The average

time to maturity is 7.70 years, and the average increase in the weighted KBDI is 10.57. The

sample comprises 406,647 bond-month trades spanning from 2005 to 2020, with 52,280 bonds

issued by 1,641 school districts. The mean (median) number of bonds traded in a district-

year-month is 3.60 (2). Appendix Table A2 presents the sample composition, breaking down

each bond’s trade by its issuing state and trading year. Bonds issued in California and Texas,

or those traded in the later 2010s, are overrepresented. Thus, we provide a robustness check

by weighting each bond by the inverse of the count of distinct bonds within each state for a

specific trade year.

2.4 Historic wildfire perimeters

In this paper, we study how future wildfire risks are priced in the municipal bond market. But

throughout our sample period, a number of wildfires burned across the US. Indeed, Liao and

Kousky (2022) document that the probability of municipal budget deficits increases in the

aftermath of wildfires in California. Moreover, there is burgeoning empirical evidence on the

direct costs of historic wildfire events on real estate, consumer credit, and the labor market,

which could potentially weaken municipalities’ ability to service debt and impact bond prices.

To isolate the capitalization of future fire risks from the direct impacts of historic fire events,

we exclude observations that were directly affected by such events in our robustness check.

To identify school districts affected by large-scale fires, we use the Monitoring Trends in

Burn Severity (MTBS) data provided by the US Geological Survey Earth Resources Obser-

vation and Science center and the US Department of Agriculture Forest Service Geospatial

Technology and Applications center. This dataset is available from 1984 to present. We over-

lay the MTBS wildfire footprint polygons with the 2010 US census blocks to locate census

blocks impacted by historic wildfire events. For a given school district d, let Nd represent the

number of census blocks within the school district. Within each block i, data are available

on the number of housing units (HU) and whether the block experienced wildfire events. We
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then compute the percent of housing units affected by historic wildfires at the school district

levels as follows:

1∑Nd

j=1HUj

×
Nd∑
i=1

[
HUi × I(i is in the MTBS fire footprint)

]
. (5)

We filter events that occurred after 2005 to match municipal bond transaction data. We

then define school districts impacted by large-scale wildfire events as those where more than

0.1% of housing units were affected for the first time during our sample period. We provide a

robustness check by excluding all the transactions from school districts since they were first

impacted by large-scale wildfire events, which amounts to 79,250 bond-month observations.

2.5 Socioeconomic and municipal finance data

We collect socioeconomic and municipal finance data for all school districts for heterogeneity

analysis. First, the National Center for Education Statistics (NCES) Education Demographic

and Geographic Estimates (EDGE) program uses the Census Bureau’s American Community

Survey (ACS) to summarize socioeconomic information for each district. We collect data

on median household income and the percentage of the population identifying as white to

examine whether districts with higher minority population shares face higher borrowing costs

in response to an increase in future wildfire risks. Second, our municipal finance data is from

the NCES Common Core Data (CCD) School District Finance (SDF) survey, which provides

the data on school district finances. We focus on revenues to determine whether districts with

a greater reliance on local revenue sources incur higher interest rates in response to rising

wildfire risks. We then merge these datasets with our bond data using the Local Education

Agency Identity (LEAID).

12



3 Empirical methods and results

3.1 Identification strategy

To identify the association between future wildfire risk changes and municipal bond credit

spreads, we adopt the following regression specification:

Spreadb,d,c,t = λd,t+αd,m(b)+
2020∑

y=2005
y ̸=2006

I(Year = y)
[
βy∆Fired,m(b) + θ′

yZb,d,c,t

]
+γ ′Xb,d,c,t+εb,d,c,t,

(6)

for the transaction of bond b, issued by school district d within county c and occurring in

year-month t. We define Spread as the yield to maturity over its maturity-matched MMA

municipal yield benchmark on the last date a trade occurred each year-month for that bond.

Maturity calendar dates are grouped into intervals of 5 years, and wildfire risks are interpo-

lated using a stepwise function with equal steps from the historic level (1995-2004) to the

mid-century prediction (2045-2054). We define ∆Fire as the difference between the maturity

calendar date group-matched interpolated value and the historic level, which is now standard-

ized to a mean of zero and standard deviation of one. The covariates in Z include the natural

logarithm of the number of years before the maturity date (time to maturity in years) and

insurance status to account for time-varying term premia and the evolution of municipal bond

insurance value (Chun et al., 2019; Cornaggia et al., 2023b). Other covariates in X include

each bond’s age in years, its monthly trading volume divided by its face value (turnover), the

monthly standard deviation of its prices, as well as its callability and sinkability status.

We also include the bond’s district-by-maturity-calendar-date-group fixed effects αd,m(b)

to absorb any time-invariant differences across bonds with varying maturity calendar dates

within the same district. For example, bonds maturing at later years may inherently carry

greater credit risks compared to those with earlier maturity dates within a district. Addition-

ally, we include district-by-trade-year-month fixed effects λd,t to control for any time-varying

local economic conditions and issuer credit ratings, which helps account for factors that may
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correlate with trends in wildfire risks and the creditworthiness of a school district. Standard

errors are clustered at the county level to account for within-county interdependence in local

economic conditions. We put equal weights to each bond-year-month observation.

In line with Goldsmith-Pinkham et al. (2023) and Acharya et al. (2022), we hypothesize

that awareness of future climate perils increases over time, following the release of the IPCC’s

fifth assessment report in 2014. The main coefficient of interest βy measures the year-to-year

within-district variation in spreads in response to a one standard deviation increase in wildfire

risk changes relative to the reference year. To summarize impacts after 2014, we adopt the

following specification:

Spreadb,d,c,t = λd,t + αd,m(b) + β I(Year ≥ 2015)∆Fired,m(b)

+
2020∑

y=2005
y ̸=2006

I(Year = y)θ′
yZb,d,c,t + γ ′Xb,d,c,t + εb,d,c,t, (7)

where the trade year indicators are replaced by I(Year ≥ 2015), which equals one for all

periods post-2014 and zero otherwise. The parameter β summarizes the average effect after

2014. The other covariates are identical to those specified in Equation 6.

3.2 Main results

Table 2 presents the year-by-year and post-2014 impacts of wildfire risk changes on the credit

spreads of school district bonds. In column (1), our regression analysis adopts parsimonious

controls by including district-by-trade-year-month fixed effects to address time-varying local

economic conditions. In column (2), we further control for district-by-maturity-calendar-date-

group fixed effects to account for any time-invariant differences across bonds with varying term

structures within the same district. In column (3), our benchmark regression specification

additionally incorporates controls for bond-level characteristics.

[ Table 2 Here ]
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In the most parsimonious specification, we observe a positive association between future

wildfire risk changes and credit spreads in the baseline year (2006). This positive correlation

can be partly attributed to the varying term structures of bonds issued by the same school

district; bonds with later maturity calendar dates could inherently carry higher time-invariant

risks compared to those maturing sooner. After adjusting for district-by-maturity-calendar-

date-group fixed effects to account for such confounding factors, we see that the impact of

future wildfire risk changes on credit spreads within the same district begins to diverge since

2010. However, this positive association could be resulting from time-varying bond-level

characteristics such as term premia or the value of bond insurance. In particular, Chun et al.

(2019) and Cornaggia et al. (2023b) document that the creditworthiness of municipal bond

insurers declined following the Great Recession, and the benefits of insurance dissipated in

both secondary and primary markets.

After accounting for bond-level characteristics, the positive correlations diminish, and the

yearly variation in spreads from 2010 to 2014 becomes statistically indistinguishable from the

baseline trade year. Similar to the findings in Goldsmith-Pinkham et al. (2023) and Acharya et

al. (2022), we observe positive yearly coefficients around the release of the fifth IPCC report,

which suggests that the difference in spreads among bonds with varying maturities within

the same district begins to widen further in the mid-2010s compared to 2006. On average, a

one standard-deviation increase in the weighted KBDI leads to a 23-basis point rise in school

district bond spreads post-2014, which is about 42% of the average spreads in the sample.

Figure 2 plots the year-by-year estimates in column (3). The rise in wildfire risk premiums

in US school district bond markets coincides with some evidence regarding the increasing fire

activities in the US. Burke et al. (2021) find that burned area from wildfires has quadrupled

over the past four decades in the US. Moreover, Abatzoglou and Williams (2016) document

that anthropogenic climate change substantially increased fuel aridity in Western US forests

during 2000-2015. Combined with increased fire activities, the release of the fifth IPCC report

in 2014 may have heightened awareness of wildfire potentials within financial markets.
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[ Figure 2 Here ]

3.3 Robustness

We conduct several robustness checks on our main regression by adopting different estimation

methods, expanding spatial coverage, using an alternative metric for wildfire risks, excluding

communities directly impacted by wildfire events during our sample period, and varying the

step size for interpolating future wildfire risks within districts. First, we assign weights to

bond-trade-year-month observations by the inverse of the count of distinct bonds within each

state for a specific year. We use this new weight because bonds issued in California and Texas,

or those traded in the later 2010s, are overrepresented in our sample (see Table A2). Column

(2) in Appendix Table A3 reports the year-by-year and post-2014 impacts using equal weights.

The post-2014 average impact of wildfire risk on municipal spreads is approximately 1 basis

point higher, but the year-by-year patterns are qualitatively similar.

Second, we expand our sample by including bonds issued in counties that either contain

only one district or span across two counties to improve the representativeness of our sample.

The number of bonds and districts in our sample increases from 52,280 to 68,780 and 1,641 to

2,458, respectively. With this expansion, school districts are not nested within counties, and

thus, we cluster standard errors at the school district level. Columns (3) and (4) in Appendix

Table A3 present the year-by-year and post-2014 impacts after including these instances. The

former does not use equal weights, while the latter does. The average impact post-2014 is

higher, but the year-by-year patterns remain qualitatively similar to those observed in the

benchmark regression.

Third, we expand the spatial coverage of our sample by including the Northeast, Southeast,

Midwest, and Northern Great Plains regions. Appendix Table A4 replicates the main regres-

sion analysis with this expanded sample. While the year-by-year estimates exhibit similar

patterns, the average impact post-2014 is smaller than the benchmark regression. The impact

on credit spreads is smaller because the extended regions have meteorological conditions that
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are less prone to wildfires (Brown et al., 2021), meaning that a one standard deviation rise in

future wildfire risk represents a smaller increase than in our benchmark specification.

Fourth, we use the Fire Weather Index (FWI) calculated by ANL (2023) as an alternative

metric for assessing wildfire risks. Specifically, we apply the same weighting methods outlined

in Section 2 to the Summer average daily FWI, as the index reaches its peak during this

season, to quantify the future wildfire risks for each district (see Appendix A for details).

Panels (c) and (d) in Appendix Figure A2 map the spatial distribution of the weighted FWI

across the contiguous US. The correlation between the weighted KBDI and the weighted FWI

in our final sample is 0.70. Appendix Table A5 replicates our main regression analysis using

the weighted FWI. Both the year-by-year and post-2014 estimate exhibit the same pattern.

Fifth, we exclude observations starting from the year-month in which they were first af-

fected by large-scale fire events to isolate the capitalization of future fire risks from the direct

impact of historic wildfires. Appendix Table A6 replicates the main regression analysis using

the sample without directly affected communities. The year-by-year estimates exhibit similar

patterns.

Lastly, we vary the step size used for interpolating future wildfire risks. Appendix Table

A7 replicates the main regression analysis using step sizes of 2 and 8 years. The year-by-year

patterns remain qualitatively similar.

3.4 Heterogeneity and further analysis

We examine whether there exist any unequal impacts of wildfire potential on credit spreads.

We first test whether credit spreads are higher for districts with a greater reliance on local

revenue sources, as would be expected if the estimated impacts reflect risks to future property

values (Auh et al., 2022; Goldsmith-Pinkham et al., 2023). To implement the heterogeneity

analysis, we categorize school districts into two groups: one with its own historical average

ratio of local to total revenue greater than the national mean, and the other with a ratio below

the national mean. We interact this indicator with wildfire risk changes in Equation 7.
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Column (2) in Table 3 reports the post-2014 impact of wildfire risk changes on municipal

spreads, interacted with the indicator of school districts heavily dependent on local sources.

The national average ratio of local to total school district revenue from 2005 through 2021 is

about 40%. About 50% of bond-month trades in our sample are issued by districts classified

as locally dependent. One standard deviation increase in the weighted KBDI results in an

18.1-basis point increase in municipal spreads post-2014 for districts where less than 40% of

revenues are from local sources. Locally dependent school districts face a 29.3-basis point rise

in credit spreads in response to a one standard deviation in the weighted KBDI. This finding

indicates that investors demand larger spreads for at-risk bonds backed by less diversified tax

revenue sources.

[ Table 3 Here ]

We also examine whether school districts with a higher percentage of minorities face higher

interest rates in response to future wildfire risks, motivated by Jerch et al. (2023)’s findings that

the municipal fiscal impacts of hurricane strikes are more pronounced in such communities.

We categorize school districts into two groups: one with its own historical ratio of nonwhite

population greater than 35%, and the other with a percentage less than 35%. The white alone

population account for about 70% and 60% in the United States in the 2010 and 2020 Census,

respectively. We choose the midpoint as a threshold and about 40% of bond-month trades

in our sample are issued by districts classified as high minority share. We further control for

district-wide income levels to mitigate their potential confounding effects on distributional

outcomes. The nationwide average median household income by school district from 2009

to 2021 is about $58,107 (in 2017 USD). We classify school districts as “High Income” if

their own average median household income is above $58,107 (in 2017 USD). Our finding in

column (3) of Table 3 shows that a one standard deviation increase in the weighted KBDI

leads to an 18.7-basis point increase in credit spreads post-2014 for districts where less than

35% of the population identifies as non-white. School districts with higher minority shares

experience a 30.2-basis point increase in municipal spreads following a one standard deviation
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increase in the weighted KBDI, which remains robust even after controlling for income levels.

Taken together, considering both fiscal structure and racial composition is essential to identify

vulnerable communities.

Finally, in appendix C, we provide some suggestive evidence on the capitalization of future

wildfire risk increases into housing values. If residents are forward-looking, growing wildfire

risks should be reflected in property values which, in turn, could affect the value of tax

bases and alert lenders to credit risks related to climate change. While identification is more

challenging for this outcome (as we cannot include the same set of fixed effects as in our

main estimation), we find that higher increases in a district’s future fire risks appear to be

associated with significant reductions in property values as well.

4 Conclusion

This paper examines whether financial markets are responding to projections of climate-driven

wildfire risk changes. We ask this question in the context of the US municipal bond market and

wildfire risks, where policy makers have shown increasing concern,12 but little is know about

their impacts empirically. Our main result is that increases in projected wildfire risks over

the next 30 years are already associated with economically significant increases in municipal

borrowing costs. The emergence of this association in the mid-2010s coincides with increased

capitalization of other climatic risks into US municipal bond markets, including sea level rise

(Goldsmith-Pinkham et al., 2023) and heat stress (Acharya et al., 2022), suggesting that these

trends are not limited to a specific type of climatic risk. At the same time, our results also

demonstrate the importance of studying different climate risk factors individually, as prior

work considering wildfires only as part of general climate risk indices has often failed to detect

economically significant impacts, such as we see in our analysis.

12“Investing in the Future: Safeguarding Municipal Bonds from Climate Risk (Full Committee Hearing on Wednesday,
January 10, 2024, 10:00 AM),” United States Senate Committee on the Budget https://www.budget.senate.gov/hearings/
investing-in-the-future-safeguarding-municipal-bonds-from-climate-risk. Accessed on 2024-10-08.
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We also find that future wildfire risk changes have larger effects on districts with higher

minority population shares and more reliance on local revenue sources. These findings add

to the emerging evidence on the disproportionate fiscal costs of climate change facing lower-

income and minority populations (e.g., Jerch et al., 2023; Barrage, 2024; Miao et al., 2023).

Our results also suggest the risk of a “vicious cycle,” where greater wildfire risk may reduce

vulnerable municipalities’ fiscal space and, thus, their ability to provide public goods and

disaster recovery, further undermining their ability to borrow in the future. Similar risks have

been recently pointed out in the international context for disaster-prone emerging markets,

where both policymakers and scholars are exploring risk-sharing financial innovations (e.g.,

Mallucci, 2022; Phan and Schwartzman, 2023). Whether and which risk-sharing innovations

could aid US municipalities facing growing climate risks is thus an important area for future

research.
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Panel A: Steps to Cleaning Municipal Bond Transaction Data

Number of Trades

Full MSRB sample 145,451,842

Select federally tax-exempt school district bonds 23,062,421

Drop pre-refunded bonds 13,517,019

Remove clerical errors and select bonds traded at least 10 times 12,248,508

Drop bonds with a time to maturity greater than 30 years 12,188,308

Drop trades during the last year before maturity 11,355,720

Drop trades during the first three months after the issuance 8,161,606

Construct a monthly panel and merge with MMA benchmark yield 1,269,703

Merge with wildfire exposure and other socioeconomic data 1,141,075

Select bonds issued in counties with more than one school district 782,689

Select bonds issued in the NW, SW, and SGP regions 406,647

Panel B: Summary Statistics

Mean Standard Deviation Observations

Fire Risk Change 10.57 14.59 406,647

Yield-to-Maturity (%) 2.38 1.22 406,647

Spread (basis points) 53.65 62.28 406,647

Time to Maturity (years) 7.70 6.22 406,647

Bond Age (years) 3.06 2.74 406,647

Monthly Trading Volume ($000) 599,815.48 2,659,602.90 406,647

Monthly Turnover 0.22 0.45 406,647

Monthly Standard Deviation of Price 0.62 0.66 406,647

I{Insured} 0.35 0.48 406,647

I{Callable} 0.42 0.49 406,647

I{Sinkable} 0.09 0.28 406,647

Table 1: Sample Construction

This table summarizes the sample construction. Panel A outlines the process of cleaning the municipal bond data. Potential
clerical errors include trades without prices, those occurring on holidays or weekends, those priced above $150 or below $50
per $100 par value, and those with coupon rates exceeding 20%. See Section 2 for information on each step. The final sample
comprises 406,647 bond-month trades spanning from 2005 to 2020, with 52,280 bonds issued by 1,641 school districts. Panel B
reports the summary statistics for the variables used in the sample. Fire Risk Change is the difference between the maturity-
calendar-date-group-matched interpolated weighted KBDI and the historical weighted KBDI within a district. Yield-to-Maturity
is an annual interest rate that equates the present value of cash flow payments received from a bond with the monthly mean of its
daily fundamental prices. Spread is the yield-to-maturity above the maturity-matched MMA benchmark yield. Time to Maturity
is the number of years between the transaction date and the maturity date in the bond-year-month. Bond Age is the number of
years between the issue date and the transaction date in the bond-year-month. Monthly Trading Volume is the sum of the par
value traded in the bond-year-month. Monthly Turnover is the ratio of Monthly Trading Volume to the total face value in the
bond-year-month. Monthly Standard Deviation of Price denotes the standard deviation of quoted prices (per $100 par value)
within the bond-year-month. I{Insured}, I{Callable}, and I{Sinkable} denote the insurance, callability, and sinkability status,
respectively.
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1 2 3

∆ Fire 14.47*** - -
(3.006) - -

∆ Fire × I(Year = 2005) 7.645** 12.88*** 5.454*
(3.123) (3.041) (3.130)

∆ Fire × I(Year = 2007) 2.455 6.540** 1.902
(3.209) (3.219) (3.327)

∆ Fire × I(Year = 2008) -5.949 -0.483 -1.267
(7.536) (9.894) (9.111)

∆ Fire × I(Year = 2009) 6.354 14.31 -5.699
(8.266) (10.71) (13.88)

∆ Fire × I(Year = 2010) 14.82*** 22.74*** -3.036
(5.634) (8.081) (10.28)

∆ Fire × I(Year = 2011) 15.05*** 24.60*** -4.394
(4.068) (6.572) (9.425)

∆ Fire × I(Year = 2012) 24.89*** 39.72*** 0.615
(3.529) (5.967) (5.792)

∆ Fire × I(Year = 2013) 16.11*** 33.39*** -5.710
(3.976) (6.447) (6.267)

∆ Fire × I(Year = 2014) 19.08*** 37.95*** 3.380
(4.294) (7.280) (5.827)

∆ Fire × I(Year = 2015) 21.05*** 45.52*** 16.31**
(4.476) (8.192) (6.328)

∆ Fire × I(Year = 2016) 32.90*** 59.90*** 19.38***
(5.045) (9.039) (6.969)

∆ Fire × I(Year = 2017) 31.11*** 60.07*** 19.72***
(5.099) (9.361) (6.848)

∆ Fire × I(Year = 2018) 30.51*** 64.20*** 20.94***
(4.848) (9.575) (6.728)

∆ Fire × I(Year = 2019) 46.03*** 86.65*** 28.64***
(6.549) (10.97) (6.866)

∆ Fire × I(Year = 2020) 48.75*** 91.65*** 29.24***
(7.563) (11.84) (6.931)

R2 0.525 0.642 0.758

∆ Fire 26.73*** - -
(3.098) - -

∆ Fire × I(Year >= 2015) 25.85*** 32.60*** 22.75***
(6.211) (4.735) (4.478)

R2 0.523 0.638 0.757

District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 362,909 362,094 361,321

Table 2: Effect of Wildfire Risk Increases on Municipal Credit Spreads

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads, as described by Equation
6 and Equation 7. Standard errors are reported in parentheses, clustered at the county level. *, **, and *** indicate the
corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference between
its yield to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points. Maturity
calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2040-44),
and fire potentials are interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction
(2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-group-matched interpolated value and the
historic level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-
by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects. Controls include bond’s log of the
number of years before the maturity date and its insurance status interacted with the trade year indicator, the number of years
since issuance, its monthly trading volume divided by its face value, its monthly standard deviation of prices, as well as its
callability and sinkability status.
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1 2 3

∆ Fire × I(Year >= 2015) 22.746*** 18.144*** 18.699***
(4.478) (4.621) (4.729)

∆ Fire × I(Year >= 2015) × I(Locally Dependent) - 11.195** -
- (5.681) -

∆ Fire × I(Year >= 2015) × I(With a Racial Minority Population) - - 11.495**
- - (4.533)

∆ Fire × I(Year >= 2015) × I(High Income) - - -0.533
- - (5.379)

R2 0.757 0.757 0.757

District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 361,321 361,321 361,321

Table 3: Effect of Wildfire Risk Increases on Municipal Credit Spreads - Heterogeneity

This table reports the heterogeneous impacts of wildfire risk increases on municipal spreads post-2014, as outlined in Equation 7
in which fire risk changes are further interacted with the indicator for heterogeneity. Standard errors are reported in parentheses,
clustered at the county level. *, **, and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively.
The nationwide average ratio of local to total school district revenue from 2005 through 2021 is about 40%. We classify school
districts as “Locally Dependent” if their average revenues from local sources exceed 40% of total revenues. The White alone
population decreased from 70% to 60% from 2010 to 2020 Census. We categorize school districts as “With a Racial Minority
Population” if the proportion of White-alone population is below 65%. The nationwide average median household income by
school district from 2005-2009 to 2017-2021 is $58,107 (in 2017 USD). We classify school districts as “High Income” if their own
average median household income is above $58,107 (in 2017 USD). The credit spread of a bond is defined as the difference between
its yield to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points. Maturity
calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2040-44),
and fire potentials are interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction
(2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-group-matched interpolated value and the
historic level, which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-
by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects. Controls include bond’s logarithm
of the number of years before the maturity date and its insurance status interacted with the trade year indicator, the number of
years since issuance, its monthly trading volume divided by its face value, its monthly standard deviation of prices, as well as its
callability and sinkability status.
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(a) Historic weighted KBDI (1995-2004) (b) Mid-century weighted KBDI (2045-2054)

(c) Difference

Figure 1: Wildfire Exposure by School District

This figure maps each school district’s historic and mid-century weighted Keetch-Byram Drought Index (KBDI) based on equation
5, along with their difference in the Northwestern (NW), Southwestern (SW), and Southern Great Plains (SGP) regions, as
classified by USGCRP (2017). The weights are determined by the number of housing units at the US census block level, further
interacted with the Wildland-Urban Interface (WUI) classification. We restrict the sample to these regions because their average
daily unweighted KBDI values exceed 400 in September, October, and November during the historic period from 1995 to 2004
(Brown et al., 2021). This threshold generally indicates late summer or early fall weather conditions with a high potential for
wildfire events (Liu et al., 2010).
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Figure 2: Effect of Wildfire Risk Increases on Municipal Credit Spreads

This figure plots the year-by-year impact of wildfire risk increases on the credit spreads of school district bonds, as described
by Equation 6, with the baseline year set to 2006. The vertical lines denote the 95% confidence intervals, with standard errors
clustered at the county level. The credit spread of a bond is defined as the difference between its yield to maturity, calculated
from the monthly mean of its fundamental daily prices, and its maturity-matched Municipal Market Analytics (MMA) yield
benchmarks in basis points, based on the last trade date each year-month. Maturity calendar dates are grouped into intervals of
5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and wildfire potentials are interpolated using a
stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054). We define ∆Fire as the difference
between the maturity-calendar-date-group-matched interpolated value and the historic level, which is standardized to a mean of
zero and standard deviation of one. The regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and
district-by-trade-year-month fixed effects. It also contains the log of the number of years before the maturity date and insurance
status interacted with the trade year indicator. In addition, we control for the bond’s age in years, its monthly trading volume
divided by its face value, the monthly standard deviation of its prices, as well as its callability and sinkability status.
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Online Appendix for

Pricing Climate Risks: Evidence from Wildfires and Municipal Bonds

A Two alternative measures of economic wildfire risk

Kearns et al. (2022) apply the First Street Wildfire Model (FS-WFM) to compute the property-

level likelihood of wildfire occurrences for 2022 and 2052 using the moderate-emissions scenario

(RCP 4.5). This data is available to academics for noncommercial use, although the highest

resolution is at the census tract-level. Moreover, this dataset contains the total number of

properties and the count of properties expected to be exposed to a likelihood of wildfire being x

percent within the next 30 years relative to the baseline of 2023, where x denotes risk categories

ranging from 0% to 36% or greater. Each category is defined as follows: 0%, 1%, 1-3%, 3-6%,

6-9%, 9-14%, 14-19%, 19-26%, 26-36%, and 36%+.

We do not use this measure in our analysis for two reasons. First, since it normalizes fire

risk to zero before 2023, it is not possible to assign near-term risks for bonds maturing prior to

2023. Second, their most detailed predictions for non-commercial use are only available at the

census tract level, which, in certain cases, overlaps more than one school district. Therefore,

it is not possible to disaggregate risk measures while accounting for detailed variations in the

distribution of the Wildland-Urban Interface (WUI).

Nonetheless, to assess the correlation between the weighted KBDI in our analysis and other

peer-reviewed future wildfire risk measures, we disaggregate their data to the school district

level using area weights. First, we overlay the census tract map with the US school district map

to compute the area of each district that intersects with the tract. Second, we disaggregate the

total number of properties and the count of properties expected to be exposed to wildfire based

on the proportion of the overlaid area relative to the tract. Lastly, we sum up each quantity

within the district and calculate the proportion of properties exposed to wildfire in each risk

category.
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Argonne National Laboratory calculates the Fire Weather Index (FWI) — developed by

the Canadian Forest Service — across the contiguous US at a spatial resolution of 12 km

for historic (1995-2004) and mid-century (2045-2054) periods (ANL, 2023). To generate the

ensemble mean of the seasonal average daily FWI, they use Argonne’s downscaled 12 km climate

data under the high-emissions scenario (RCP 8.5) and across three climate models: Community

Climate System Model (CCSM), Geophysical Fluid Dynamics Laboratory (GFDL), and Hadley

Centre Global Environmental Model (HadGEM). It uses daily readings of temperature, relative

humidity, wind speed, and 24-hour precipitation to assess fire potential, focusing on early to

mid-afternoon conditions when weather conditions are favorable for fire spread.

As a robustness check, we use their summer average daily FWI to measure the fire potential

of each school district, as the index reaches its peak during this season.13 Given the consistency

in spatial resolution, prediction time scale, and emissions scenario between KBDI and FWI, we

apply the same method outlined in Section 2 to compute the weighted summer FWI.

Figure A2 maps the spatial distribution of the weighted KBDI, the weighted summer FWI,

and the proportion of properties exposed to wildfire risks exceeding 14% — categorized as

“severe” by Kearns et al. (2022) — across school districts in the contiguous United States.

In the mid-century, the Northwest (NW), Southwest (SW), and Southern Great Plains (SGP)

regions exhibit elevated wildfire potentials across all three metrics. The Northern Great Plains

(NGP) show high fire risks for both FWI and the First Street Wildfire Model (FS-WFM), while

the Southeast (SE) region displays high risks specifically for KBDI. In the final sample of the

NW, SW, and SGP regions, the correlation between the change in KBDI from historic to mid-

century and the FS-WFM index is 0.59. This correlation increases to 0.70 when considering

the change in summer FWI from historic to mid-century.

[ Figure A2 Here ]

13ANL (2023) divides the seasons into winter (December, January, February), spring (March, April, May), summer (June, July,
August), and autumn (September, October, November).
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B Name matching

In our economic wildfire risk data, we compute the weighted KBDI using the NCES school

district boundary map, in which each district is uniquely identified by Local Education Agency

Identification (LEAID) and the associated district names used in the Common Core of Data

(CCD). But in our bond characteristics data, each district is uniquely identified by the 6-digit

Committee on Uniform Securities Identification Procedures (CUSIP) and the associated issuer

names. To the best of our knowledge, there is no established mapping between LEAID and the

6-digit CUSIP that can be used to assign climate risks to each bond issuer. Here, we describe

the algorithm that we develop to match the 2010 vintage LEAID with the 6-digit CUSIP.

1. Within each state, drop duplicates and select unique string values for district and issuer

names, along with their corresponding LEAID and 6-digit CUSIP, from the economic

wildfire risk and bond characteristics data, respectively.

2. Within each state, extract the first word from each school district name and then apply

the following filters:

(a) Drop any cases where the first word extracted appears more than once, as we want

to keep only unique names.

(b) Keep only those cases where the length of the first word exceeds 3 characters to

avoid generic names such as ”San”.

(c) Exclude any cases where the first word includes directional terms, such as, North,

Northern, Northeast, Northeastern, Northwest, Northwestern, South, Southern, South-

east, Southeastern, Southwest, Southwestern, East, Eastern, West, and Western.

3. Within each state, find issuer names that contain the filtered first words of school district

names using a Cartesian product between two datasets, and apply the following filters:

(a) Drop cases where multiple issuers are matched to a single school district.

(b) Drop cases where multiple first words are matched to a single issuer.
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After completing the algorithm-based matching, there may still be unmatched instances. In

such cases, we manually match them according to the following guidelines:

1. Find special proper nouns within each issuer name and search for matches in district

names.

2. If the previous step does not work, follow these steps:

(a) Search for the issuer name on the Electronic Municipal Market Access (EMMA) and

open its official statement.

(b) Identify the issuer’s special proper name from this document and match it.

(c) Extract any relevant information from the description in the document.

(d) Visit the NCES Search for Public School Districts.14 Enter the information identified

above and match accordingly.

3. Check the manually matched outcomes and categorize any unmatched cases as follows:

(a) Multiple districts per issuance (e.g., AUBURN CALIF UN SCH DIST)

(b) No official statement (e.g., BAY AREA SCH FOR INDPT STUDY INC CALIF)

(c) No issuer name on EMMA (e.g., ARKANSAS ST DEV FIN AUTH CAP IMPT

REV)

(d) College (e.g., ALABAMA ST UNIV CTFS PARTN)

(e) State, county, or city (e.g., PELHAM ALA)

(f) Technical/vocational (e.g., EAST VY ARIZ INST OF TECHNOLOGY DIST NO

401)

(g) Charter (e.g., CALIFORNIA MUN FIN AUTH CHARTER SCH LEASE REV)

(h) Others (e.g., ARIZONA INDL DEV AUTH REV)

4. Drop the unmatched cases.

14https://nces.ed.gov/ccd/districtsearch/
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C Suggestive evidence on housing value capitalization

The National Center for Education Statistics (NCES) Education Demographic and Geographic

Estimates (EDGE) program uses the US Census Bureau’s American Community Survey (ACS)

to summarize data on economic and housing conditions for each school district. The estimates

are derived from the ACS 5-year data, thus only accessible for the years from 2005-09 to 2017-21.

For our analysis, we restrict our sample to the years from 2009 to 2021. We collect information

on the median value of owner-occupied housing units, along with control variables such as mean

household income and the unemployment rate. We then construct a balanced panel by merging

this dataset together with our risk map using the Local Education Agency Identity (LEAID).

Appendix Table A8 provides summary statistics.

If residents are forward-looking, they will consider anticipated wildfire risk changes when

purchasing properties. The capitalization of future wildfire risk changes into housing values

could potentially undermine school districts’ ability to pay debt, alerting lenders to credit risks

related to climate-driven wildfire events. To examine the association between future wildfire

risk changes and housing values, we consider the following regression specification:

Yd,c,t = λc,t + αd +
2021∑

y=2009
y ̸=2011

βy∆FiredI(Year = y) + γ ′Xd,t + εd,c,t, (8)

for school district d within county c and in year t. The outcome variable we consider is the

median value of owner-occupied housing units.15 We exclude school districts that span across

more than one county to control for time-varying economic conditions at the county level

(λc,t). Additionally, we exclude all observations starting from the year in which they were

first impacted by large-scale wildfires, to isolate the effects of future fire risk changes from the

direct impacts of historical wildfires. To align with the results from bond pricing, we restrict

our sample to school districts located in the Northwest, Southwest, and Southern Great Plains

regions.

15While the ACS housing value data are reported by respondents, recent evidence indicates that Census- and transactions-based
price data analyses yield comparable results in other settings (Cassidy et al., 2022).
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We define ∆Fire by the difference between mid-century and historic weighted KBDI values

within a district, standardized to a mean of zero and standard deviation of one. The covariates

in X include the mean household income and unemployment rate to account for time-varying

local economic conditions within a district. We include district fixed effects αd to absorb any

time-invariant differences across school districts. Moreover, we include county-by-year fixed

effects λc,t to control for time-varying local economic conditions at the county level. While we

would like the coefficient of interest βy to measure the year-to-year within-county variation in Y

in response to a one standard deviation rise in future fire risks across districts, we here cannot

include the rich set of district-by-year fixed effects that would account for economic conditions

varying at the district level over time. If, for example, there are differential trends within school

districts facing higher or lower future wildfire risk increases, these differing time trends could

threaten the identification of the association between wildfire risk changes and housing values.

We therefore consider the estimates as suggestive. Standard errors are clustered at the county

level to account for within-county interdependence.

Figure A3 plots the year-by-year association of future wildfire risk changes with median

value of owner-occupied housing units, which exhibits a persistent negative correlation since

2017. A one standard-deviation in the weighted KBDI is associated with an approximately

$6,000 (in 2017 USD) decrease in the median value of owner-occupied housing units in 2021

relative to 2011, which is equivalent to 2.3% of the average median value of owner-occupied

housing units across all school districts. We also run a before-and-after analysis for the year

2015, similar to the equation (7). The corresponding coefficients have the same sign as the

year-by-year estimates and are statistically significant at the 5% level.
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Region State

Northeast Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,

New York, Pennsylvania, Rhode Island, Vermont, West Virginia

Southeast Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana,

Mississippi, North Carolina, South Carolina, Tennessee, Virginia

Midwest Michigan, Minnesota, Missouri, Illinois, Indiana, Iowa,

Ohio, Wisconsin

Northern Great Plains Montana, Nebraska, North Dakota, South Dakota, Wyoming

Southern Great Plains Kansas, Oklahoma, Texas

Northwest Idaho, Oregon, Washington

Southwest Arizona, California, Colorado, Nevada, New Mexico, Utah

Table A1: National Climate Assessment Regions of the Contiguous United States

Source: US Global Change Research Program (USGCRP, 2017)
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Panel A: By State

Number of Trades Percent

Arizona 30,319 7.46

California 200,481 49.30

Colorado 10,313 2.54

Idaho 2,006 0.49

Kansas 7,767 1.91

New Mexico 3,488 0.86

Oklahoma 2,767 0.68

Oregon 6,413 1.58

Texas 105,135 25.85

Utah 6,313 1.55

Washington 31,645 7.78

Total 406,647 100.00

Panel B: By Trade Year

Number of Trades Percent

2005 8,556 2.10

2006 12,353 3.04

2007 13,533 3.33

2008 14,586 3.59

2009 15,622 3.84

2010 15,994 3.93

2011 16,650 4.09

2012 15,821 3.89

2013 20,893 5.14

2014 18,414 4.53

2015 22,378 5.50

2016 28,907 7.11

2017 39,239 9.65

2018 52,614 12.94

2019 53,948 13.27

2020 57,139 14.05

Total 406,647 100.00

Table A2: Sample Composition
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1 2 3 4

∆ Fire × I(Year = 2005) 5.454* 2.756 3.125 -1.768
(3.130) (10.63) (3.514) (8.699)

∆ Fire × I(Year = 2007) 1.902 9.415 0.984 5.010
(3.327) (8.626) (3.711) (6.734)

∆ Fire × I(Year = 2008) -1.267 -0.621 -3.238 -6.818
(9.111) (11.36) (7.613) (9.136)

∆ Fire × I(Year = 2009) -5.699 -11.18 -8.577 -18.26*
(13.88) (14.32) (8.355) (9.628)

∆ Fire × I(Year = 2010) -3.036 -2.867 -4.434 -5.111
(10.28) (12.56) (7.859) (8.941)

∆ Fire × I(Year = 2011) -4.394 1.618 -6.736 -7.182
(9.425) (10.34) (7.675) (9.779)

∆ Fire × I(Year = 2012) 0.615 13.69 -0.912 5.820
(5.792) (11.42) (6.803) (9.007)

∆ Fire × I(Year = 2013) -5.710 7.165 -5.115 3.289
(6.267) (12.83) (7.002) (9.384)

∆ Fire × I(Year = 2014) 3.380 7.231 3.533 7.977
(5.827) (10.67) (6.403) (8.687)

∆ Fire × I(Year = 2015) 16.31** 23.68** 15.94** 20.77**
(6.328) (10.05) (6.610) (8.749)

∆ Fire × I(Year = 2016) 19.38*** 28.93** 18.74*** 26.74***
(6.969) (11.60) (6.841) (8.731)

∆ Fire × I(Year = 2017) 19.72*** 29.42*** 19.62*** 29.66***
(6.848) (11.33) (7.065) (8.850)

∆ Fire × I(Year = 2018) 20.94*** 30.60*** 20.65*** 32.51***
(6.728) (11.62) (6.986) (9.295)

∆ Fire × I(Year = 2019) 28.64*** 40.38*** 28.54*** 42.05***
(6.866) (11.20) (7.183) (9.003)

∆ Fire × I(Year = 2020) 29.24*** 45.30*** 29.18*** 45.21***
(6.931) (11.45) (7.261) (9.518)

R2 0.758 0.712 0.751 0.701

∆ Fire × I(Year >= 2015) 22.75*** 23.62*** 22.86*** 25.19***
(4.478) (4.205) (2.675) (2.877)

R2 0.757 0.712 0.751 0.701

Equal Weights N Y N Y
More Than One District Per County Y Y N N
Cluster for Standard Error County County District District
Number of Bonds 52,280 52,280 68,780 68,780
Number of Districts 1,641 1,641 2,458 2,458
Observations 361,321 361,321 469,511 469,511

Table A3: Wildfire Wildfire Risk Increases and Municipal Spreads - Robustness Specification

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads. Standard errors are
reported in parentheses. *, **, and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit
spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal Market Analytics
(MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified
School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic level
(1995-2004) to the mid-century prediction (2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The
regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the
trade year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard
deviation of prices, as well as its callability and sinkability status. Column (1) presents the benchmark specification. Column
(2) weights each observation by the inverse of the count of distinct bonds within each state for a specific trade year. Column
(3) additionally includes bonds issued in counties that contain only one district or span across two counties. Column (4) removes
geographic restrictions and applies equal weighting across states.
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1 2 3

∆ Fire 10.20*** - -
(2.366) - -

∆ Fire × I(Year = 2005) 8.036*** 10.23*** 2.147
(2.497) (2.589) (2.877)

∆ Fire × I(Year = 2007) 3.186 5.331** 1.612
(2.425) (2.363) (2.108)

∆ Fire × I(Year = 2008) -5.595 -2.841 -2.617
(6.400) (8.367) (7.541)

∆ Fire × I(Year = 2009) 4.109 9.392 -7.080
(7.299) (9.175) (11.30)

∆ Fire × I(Year = 2010) 12.32** 17.11** -5.405
(4.866) (6.778) (8.701)

∆ Fire × I(Year = 2011) 12.49*** 18.14*** -7.357
(3.396) (5.737) (8.247)

∆ Fire × I(Year = 2012) 23.82*** 33.11*** -4.109
(3.571) (5.107) (4.917)

∆ Fire × I(Year = 2013) 15.14*** 27.24*** -7.434
(3.065) (5.713) (4.703)

∆ Fire × I(Year = 2014) 17.03*** 31.24*** 0.580
(3.145) (6.555) (4.429)

∆ Fire × I(Year = 2015) 19.72*** 37.62*** 12.36***
(3.507) (7.264) (4.639)

∆ Fire × I(Year = 2016) 31.19*** 51.04*** 15.55***
(4.345) (8.231) (5.053)

∆ Fire × I(Year = 2017) 29.18*** 50.99*** 15.08***
(4.325) (8.446) (5.030)

∆ Fire × I(Year = 2018) 28.60*** 54.43*** 16.41***
(4.056) (8.695) (4.959)

∆ Fire × I(Year = 2019) 42.27*** 74.29*** 23.20***
(5.628) (10.01) (5.115)

∆ Fire × I(Year = 2020) 44.73*** 78.84*** 23.47***
(6.501) (10.79) (5.338)

R2 0.553 0.665 0.768

∆ Fire 21.22*** - -
(2.646) - -

∆ Fire × I(Year >= 2015) 24.28*** 28.49*** 20.49***
(5.293) (4.073) (3.968)

R2 0.551 0.662 0.768

District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 642,516 639,950 638,378

Table A4: Wildfire Risk Increases and Municipal Spreads - Contiguous United States

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads. The sample includes
the contiguous United States, with 116,649 bonds issued by 5,177 school districts. Standard errors are reported in parentheses,
clustered at the county level. *, **, and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit
spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal Market Analytics
(MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified
School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic level
(1995-2004) to the mid-century prediction (2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The
regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the
trade year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard
deviation of prices, as well as its callability and sinkability status.
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1 2 3

∆ Fire 17.07*** - -
(4.861) - -

∆ Fire × I(Year = 2005) 7.011 13.41** 0.763
(5.789) (6.451) (5.517)

∆ Fire × I(Year = 2007) 0.847 6.735 1.954
(4.073) (5.738) (6.010)

∆ Fire × I(Year = 2008) -2.442 1.736 4.257
(7.486) (10.53) (8.283)

∆ Fire × I(Year = 2009) 11.35 19.24 -3.297
(10.98) (13.98) (16.99)

∆ Fire × I(Year = 2010) 22.61*** 31.13*** 0.730
(7.401) (9.694) (11.87)

∆ Fire × I(Year = 2011) 19.06*** 31.57*** -3.590
(5.582) (9.144) (12.15)

∆ Fire × I(Year = 2012) 23.10*** 48.42*** 0.504
(6.563) (5.731) (7.917)

∆ Fire × I(Year = 2013) 7.792 45.22*** -2.838
(7.399) (6.272) (8.705)

∆ Fire × I(Year = 2014) 9.104 50.64*** 6.490
(6.369) (6.451) (8.233)

∆ Fire × I(Year = 2015) 16.42*** 56.54*** 17.16**
(5.985) (6.779) (8.669)

∆ Fire × I(Year = 2016) 27.49*** 71.82*** 21.49**
(5.690) (7.276) (9.432)

∆ Fire × I(Year = 2017) 24.02*** 71.81*** 21.02**
(5.714) (7.072) (8.809)

∆ Fire × I(Year = 2018) 22.18*** 75.88*** 22.21**
(5.498) (7.375) (8.824)

∆ Fire × I(Year = 2019) 38.26*** 98.11*** 30.47***
(6.336) (8.059) (8.932)

∆ Fire × I(Year = 2020) 44.66*** 105.1*** 33.15***
(6.455) (8.472) (8.770)

R2 0.505 0.641 0.758

∆ Fire 28.00*** - -
(5.867) - -

∆ Fire × I(Year >= 2015) 20.65*** 31.50*** 21.37***
(5.950) (3.532) (2.877)

R2 0.503 0.637 0.757

District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 362,909 362,098 361,325

Table A5: Wildfire Risk Increases and Municipal Spreads - Summer Fire Weather Index

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads. The weighted Fire
Weather Index is used. Standard errors are reported in parentheses, clustered at the county level. *, **, and *** indicate the
corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit spread of a bond is defined as the difference between
its yield to maturity and its maturity-matched Municipal Market Analytics (MMA) yield benchmarks in basis points. Maturity
calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified School District bonds maturing in 2030-35), and fire
potentials are interpolated using a stepwise function from the historic level (1995-2004) to the mid-century prediction (2045-2054).
We define ∆Fire as the difference between the maturity-calendar-date-group-matched interpolated value and the historic level,
which is standardized to a mean of zero and standard deviation of one. The regression includes the bond’s district-by-maturity-
year-group fixed effects and district-by-trade-year-month fixed effects. Controls include bond’s logarithm of the number of years
before the maturity date and its insurance status interacted with the trade year indicator, the number of years since issuance, its
monthly trading volume divided by its face value, its monthly standard deviation of prices, as well as its callability and sinkability
status.
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1 2 3

∆ Fire 12.66*** - -
(2.809) - -

∆ Fire × I(Year = 2005) 7.659*** 12.98*** 5.162*
(2.900) (2.607) (3.062)

∆ Fire × I(Year = 2007) 1.709 5.137* 3.225
(2.873) (3.088) (3.117)

∆ Fire × I(Year = 2008) -7.032 -2.649 0.818
(9.495) (11.61) (10.64)

∆ Fire × I(Year = 2009) 4.820 11.36 0.203
(8.813) (10.22) (12.24)

∆ Fire × I(Year = 2010) 11.37* 18.94** 1.376
(6.035) (8.324) (10.00)

∆ Fire × I(Year = 2011) 9.878*** 19.44*** 0.389
(3.455) (6.288) (9.114)

∆ Fire × I(Year = 2012) 20.25*** 31.06*** 0.169
(4.554) (6.791) (7.171)

∆ Fire × I(Year = 2013) 16.22*** 26.15*** -3.602
(3.825) (7.218) (7.619)

∆ Fire × I(Year = 2014) 21.54*** 29.75*** 3.832
(4.176) (7.455) (6.849)

∆ Fire × I(Year = 2015) 20.70*** 36.63*** 16.31**
(4.362) (9.140) (6.792)

∆ Fire × I(Year = 2016) 31.52*** 51.93*** 19.64***
(5.877) (11.15) (7.262)

∆ Fire × I(Year = 2017) 30.08*** 52.11*** 20.02***
(5.917) (11.88) (7.620)

∆ Fire × I(Year = 2018) 29.24*** 56.17*** 20.58***
(5.471) (11.97) (7.334)

∆ Fire × I(Year = 2019) 44.19*** 77.38*** 27.45***
(7.588) (13.91) (7.676)

∆ Fire × I(Year = 2020) 50.01*** 83.99*** 28.81***
(7.727) (14.55) (7.928)

R2 0.530 0.646 0.760

∆ Fire 22.65*** - -
(3.288) - -

∆ Fire × I(Year >= 2015) 27.13*** 30.80*** 20.70***
(7.054) (7.001) (5.824)

R2 0.527 0.642 0.760

District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects N Y Y
Controls N N Y
Observations 291,588 290,882 290,203

Table A6: Wildfire Risk Increases and Municipal Spreads - Excluding Directly-affected Districts

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal spreads, excluding transactions
from school districts affected by large-scale wildfire events since their first occurrence. Standard errors are reported in parentheses,
clustered at the county level. *, **, and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit
spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal Market Analytics
(MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified
School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic level
(1995-2004) to the mid-century prediction (2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The
regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the
trade year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard
deviation of prices, as well as its callability and sinkability status.
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1 2 3

∆ Fire × I(Year = 2005) 5.454* 5.904 1.072
(3.130) (4.304) (2.753)

∆ Fire × I(Year = 2007) 1.902 6.675* 7.151***
(3.327) (3.901) (2.355)

∆ Fire × I(Year = 2008) -1.267 2.083 6.378
(9.111) (10.00) (6.108)

∆ Fire × I(Year = 2009) -5.699 2.433 11.20*
(13.88) (13.57) (5.980)

∆ Fire × I(Year = 2010) -3.036 0.476 11.50*
(10.28) (12.05) (6.117)

∆ Fire × I(Year = 2011) -4.394 -4.551 9.187
(9.425) (11.15) (5.689)

∆ Fire × I(Year = 2012) 0.615 -0.0721 8.272
(5.792) (7.592) (5.247)

∆ Fire × I(Year = 2013) -5.710 -6.104 3.463
(6.267) (7.854) (6.030)

∆ Fire × I(Year = 2014) 3.380 1.903 9.841
(5.827) (7.601) (6.151)

∆ Fire × I(Year = 2015) 16.31** 15.92* 21.85***
(6.328) (8.153) (6.520)

∆ Fire × I(Year = 2016) 19.38*** 18.86** 24.47***
(6.969) (8.875) (6.901)

∆ Fire × I(Year = 2017) 19.72*** 18.25** 24.98***
(6.848) (8.993) (7.185)

∆ Fire × I(Year = 2018) 20.94*** 18.84** 26.40***
(6.728) (8.898) (6.988)

∆ Fire × I(Year = 2019) 28.64*** 25.63*** 32.10***
(6.866) (8.973) (7.106)

∆ Fire × I(Year = 2020) 29.24*** 27.20*** 34.55***
(6.931) (9.288) (7.668)

R2 0.758 0.773 0.750

∆ Fire × I(Year >= 2015) 22.75*** 20.77*** 19.00***
(4.478) (5.333) (4.047)

R2 0.757 0.772 0.750

Stepsize (years) 5 2 8
District-by-Trade-Year-Month Fixed Effects Y Y Y
District-by-Maturity-Calendar-Date-Group Fixed Effects Y Y Y
Controls Y Y Y
Observations 361,321 360,046 361,672

Table A7: Wildfire Wildfire Risk Increases and Municipal Spreads - Step Size for Interpolation

This table reports the year-by-year and post-2014 impact of wildfire risk increases on municipal credit spreads. Standard errors are
reported in parentheses. *, **, and *** indicate the corresponding p-value less than 0.10, 0.05, and 0.01, respectively. The credit
spread of a bond is defined as the difference between its yield to maturity and its maturity-matched Municipal Market Analytics
(MMA) yield benchmarks in basis points. Maturity calendar dates are grouped into intervals of 5 years (e.g., Santa Barbara Unified
School District bonds maturing in 2030-35), and fire potentials are interpolated using a stepwise function from the historic level
(1995-2004) to the mid-century prediction (2045-2054). We define ∆Fire as the difference between the maturity-calendar-date-
group-matched interpolated value and the historic level, which is standardized to a mean of zero and standard deviation of one. The
regression includes the bond’s district-by-maturity-calendar-date-group fixed effects and district-by-trade-year-month fixed effects.
Controls include bond’s logarithm of the number of years before the maturity date and its insurance status interacted with the
trade year indicator, the number of years since issuance, its monthly trading volume divided by its face value, its monthly standard
deviation of prices, as well as its callability and sinkability status. Column (1) presents the benchmark specification. Columns (2)
and (3) use step sizes of 2 and 8 years, respectively, for interpolating wildfire risks.
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Mean Standard Deviation

Fire Risk Change 28.91 28.90

Median value of owner-occupied housing units in 2017 USD (in thousands of dollars) 260.01 224.57

Mean household income in 2017 USD (in thousands of dollars) 74.88 28.74

Unemployment rate (%) 4.93 2.43

Table A8: Summary Statistics for Socioeconomic and Municipal Finance Data

This table reports the summary statistics for the variables used in the sample. The sample comprises 18,066 district-year observations
spanning from 2009 to 2021, with 1,887 school districts.
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Figure A1: Distribution of Time to Maturity by Trade Year

This figure displays the distribution of time-to-maturity in years for the bonds traded each year.
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(a) Historic weighted KBDI (1995-2004) (b) Mid-century weighted KBDI (2045-2054)

(c) Historic weighted FWI (1995-2004) (d) Mid-century weighted FWI (2045-2054)

(e) Percent of properties with a fire risk > 14%

Figure A2: Alternative Measures of Wildfire Risks

This figure maps each school district’s KBDI, FWI, and the proportion of properties exposed to fire risks exceeding 14% over the
next 30 years relative to 2023, calculated from Brown et al. (2021), ANL (2023), and Kearns et al. (2022), respectively. KBDI
values exceeding 400 and FWI values exceeding 21 indicate late summer or early fall weather conditions associated with an elevated
risk of wildfire occurrences (Liu et al., 2010; ANL, 2023).
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Figure A3: Association between Future Wildfire Risk Increases and Housing Values

This figure plots the year-by-year impacts of wildfire risk increases on the median value of owner-occupied housing units, as
described by Equation 8, with the baseline period set to 2011. The vertical lines represent the 95% confidence intervals, with
standard errors clustered at the county level. We exclude all observations starting from the year in which they were first impacted
by large-scale wildfires. We define ∆Fire as the difference between mid-century and historic weighted KBDI values per district.
The regression includes district fixed effects and county-by-year fixed effects. Additionally, we control for the mean household
income and unemployment rate of each district.
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