Pricing Externalities in the Presence of Adaptation

Woongchan Jeon*

Click here for the latest version.

November 9, 2022

Abstract

I study optimal taxation in a general equilibrium model in which households compete against final goods producers for pollutant-emitting intermediate goods. For example, as the climate warms, households use more energy in the form of air conditioning. I show theoretically that an increase in market demand for such goods increases polluting firms’ marginal profit. Firms respond by increasing their production, leading to higher pollution levels. To take these theoretical insights to reduced-form evidence, I construct a macroeconomic climate-economy model using heat-related discomfort and cooling loads as an example. In a calibrated economy, I find that the mortality social costs of carbon in 2020 are underestimated by about 7% if such feedback is not considered.

*University of California, Santa Barbara, Department of Economics, 2015 North Hall, Santa Barbara, CA 93106-9210, USA. E-mail: wjeon@ucsb.edu. I am deeply indebted to Peter Rupert, Christopher Costello, and Lint Barrage for their guidance and support. I also thank Javier Birchenall, Tamma Carleton, Gregory Casey, Don Fullerton, Kyle Meng, Armon Rezai, Kieran Walsh, and seminar participants at UCSB for their helpful comments.
1 Introduction

When people anticipate an adverse change in environmental conditions, they may engage in *private adaptation*—the process of adjusting one's behavior to reduce related negative externalities. Some examples are reroofing with asphalt shingles against wildfires, building a house on concrete stilts to prevent flooding, installing air purifiers to reduce the amount of pollutants inhaled, etc. A failure to consider such behaviors may lead to the overstatement of the social cost of externality-generating activities (Graff Zivin and Neidell, 2013; Kahn, 2016). As such, the conventional wisdom in partial equilibrium analyses is that considering private adaptation in a cost-benefit analysis will lead to lower pollution taxes because they tend to focus narrowly on the role of adaptation in reducing external marginal costs. But when people increase their demand for a pollutant-intensive input—such as asphalt, cement, or energy—for adaptation, its market demand increases. Thus, polluting industries increase their production to meet rising demand. A key question is, “how should policymakers account for such adaptation-driven general equilibrium effects when pricing externalities?”

This paper studies the role of pollutant-intensive adaptation in setting optimal pollution taxes. To this end, I compare outcomes in a general equilibrium model in which households adapt relative to the benchmark case without adaptation. The essential ingredient of this comparative statics is an increase in market demand for pollutant-intensive inputs due to adaptation. I show theoretically that endogenizing pollutant-intensive adaptation in utility and resource constraint not only reduces the external marginal costs but also shifts up the marginal profit of polluting firms—such as asphalt or cement industries—which leads to a higher level of pollution. The second channel has been previously overlooked as the existing literature implicitly captures adaptation by netting out its net benefit from pollution damages. Neglecting such general equilibrium effects in a cost-benefit analysis will lead to lower-than-optimal pollution prices. As an example, I use a dynamic climate-economy model with heat-related discomfort and cooling energy to quantify the impact of general equilibrium effects on the mortality social costs of carbon.
This paper identifies a general equilibrium channel through which pollutant-intensive adaptation shifts up the “marginal benefit of pollution” (or the marginal cost of pollution abatement). While some studies balance the cost and benefit of investing in abatement projects such as scrubbers on smokestacks, I compare the cost and benefit of emitting pollutants as a byproduct of the production of intermediate goods throughout this paper. The economy’s total production of a pollutant-intensive input is fixed in the short run. When environmental quality deteriorates, households demand this input more for adaptation, which crowds out the same input for output production. This scarcity raises the price of pollutant-intensive intermediate goods because manufacturers are willing to pay more due to their diminishing marginal products. As a result, the marginal profits of polluting intermediate firms increase because they can sell at a higher price. In response, forward-looking polluting industries will hire more factors to increase their production in the long run.

The magnitude of such general equilibrium effects relies on how much pollutant-intensive inputs households demand for adaptation in response to endogenously changing pollution levels. I use a dynamic climate-economy model à la Golosov, Hassler, Krusell, and Tsyvinski (2014) and Nordhaus (2017), which is augmented with the use of energy for cooling against heat-related discomfort. The critical ingredient is the nonseparability between temperature and energy consumption in utility, which is captured by the constant elasticity of substitution (CES) between carbon abatement and cooling. Since cooling is a substitute for emissions abatement, a rise in temperature due to increasing carbon emissions will boost energy use for cooling. To pin down the magnitude of substitutability, I calibrate a quantitative climate-economy model to match some recent reduced-form evidence on the global mortality cost of climate change and electricity consumption by Carleton et al. (2022) and Rode et al. (2021).
I first compare the competitive equilibria with endogenous cooling to the ones without adaptation to examine how fossil fuel-based energy producers react to the changes in their marginal profits. For example, when there are no carbon taxes, households use about 3.4% of the total energy produced in the economy for cooling—equivalent to 21 Giga tons of CO$_2$—in 2100. Because of an increase in market demand for energy, the share of capital and labor in the fossil fuel-based energy sector will rise by about 0.17 percentage points and about 0.06 percentage points in 2100 to clear the market. In response, CO$_2$ emissions per period (5 years) increase by about 33.3 Giga tons, equivalent to 3.2% of global carbon emissions in 2100.

To quantify the role of such general equilibrium effects on environmental policies, I next compare the optimal carbon taxes with endogenous cooling to the case in which a damage function implicitly includes the benefits and costs of cooling. Since adaptation is embedded in a damage function in the second case, the general equilibrium effects do not arise. I find that the mortality social costs of carbon in 2020 are underestimated by about 7% if such feedback is not considered.

Finally, I study whether efficiency improvements in cooling technologies can be accepted as a carbon abatement strategy without government intervention. In my model, the elasticity of substitution between abatement and adaptation measures how efficient cooling technologies are in reducing marginal climate impacts. Therefore, when the substitutability increases, households can enjoy the same level of cooling services with less energy, reducing their energy expenditure. But an increase in disposable income due to energy savings may lead to additional energy use for cooling because of income effects, which offsets the direct savings. I find that a 0.1% increase in the substitutability boosts the use of energy for cooling by about 1% in 2100, which leads to a temperature rise by 0.001°C. But the mortality social costs of carbon decrease from $202 per ton of CO$_2$ to $199 per ton of CO$_2$ in 2010 USD in 2100, which implies that the problem of an increase in energy consumption resulting from an efficiency improvement is not consequential in this case.
This paper offers a structural framework for reconciling the two seemingly contradictory strands of reduced-form studies on cooling energy consumption. One focuses on its role as self-protective measures in reducing mortality sensitivities to weather variations (Deschênes and Greenstone, 2011; Barreca, Clay, Deschênes, Greenstone, and Shapiro, 2016; Heutel, Miller, and Molitor, 2021; Carleton et al., 2022). The other underscores the adverse effects of climate-driven cooling energy demand by showing that electricity consumption responses to heat waves are much more prominent in areas with higher levels of long-run average temperature (Davis and Gertler, 2015; Biardeau, Davis, Gertler, and Wolfram, 2020; Rode et al., 2021; Auffhammer, 2022; Deschênes, 2022). Depending on which perspective one takes, the welfare implication of cooling will vary. This paper accounts for both private benefits and social costs of cooling by specifying household preferences for adaptation in a climate-economy model.

This paper also conducts a consistent welfare analysis of climate change and adaptation by taking a dynamic general equilibrium approach in line with other macroeconomic studies on endogenous climate such as Acemoglu, Aghion, Bursztyn, and Hemous (2012), Golosov et al. (2014), and Barrage (2020b). In general, it may not be innocuous to extrapolate a dose-response relation between economic outcomes and weather fluctuations using exogenously given emissions pathways, which is a common practice in reduced-form studies; see Hsiang (2016) for a review. For example, as much as mortality sensitivities to temperature fluctuations decline due to cooling, an ensuing increase in emissions can feed back into the economy by heightening the risks of heat-related discomfort. This vicious cycle can further elevate the use of energy for cooling, leading to a different trajectory of carbon emissions. This type of analysis will be valid if exogenously given scenarios are in line with its implied emissions, but it may not be ideal for simulating various policy counterfactuals that can endogenously change emissions pathways. The empirical literature has long highlighted the potential importance of accounting for these feedback effects (Rode et al., 2021). In this paper, I adopt a general equilibrium framework that includes the interaction between the climate and the economy to account for such feedback effects.
This paper also contributes to our understanding of the interrelation between private and public adjustments to climate externalities. Most structural cost-benefit studies on climate change lump all the relevant welfare effects of adaptation into one stylized damage function; see Fankhauser (2017) for a review. Specifically, each locus on this damage curve represents the least-cost combination of adaptation costs and ceteris paribus temperature effects net of adaptation benefits. But there is an emerging literature that explicitly addresses adaptation. An earlier strand of the literature decomposes the climate damage in Nordhaus and Boyer (2000) on an ad-hoc basis to model adaptation as a decision variable (de Bruin, Dellink, and Tol, 2009).¹ More recently, a couple of studies have used micro-data to build an empirically-grounded damage function with adaptation in a quantitative macroeconomic model such as Fried (2021), Balboni (2021), Conte (2022), Cruz and Rossi-Hansberg (2022), Nath (2022), and Rudik, Lyn, Tan, and Ortiz-Bobea (2022). In particular, Barrage (2020a) develops a climate-economy model with distortionary taxes in which climate change affects public investments in adaptation, government consumption requirements, tax revenue, and transfer payment to examine the interplay between optimal carbon taxes and the fiscal burden caused by climate change and public adaptation. But none of the previous studies discuss private adaptation using pollutant-intensive intermediate goods. Thus, general equilibrium effects in factor markets do not arise in response to an endogenously evolving climate.

The remainder of this paper proceeds as follows. In section 2, I illustrate how pollutant-intensive adaptation shifts up the marginal profit of polluting industries using a static model. Section 3 introduces a macroeconomic climate-economy model enriched with cooling against heat-related discomfort as a stylized example, which is calibrated in section 4. Section 5 presents quantitative results, and I conclude with a discussion of the implication of this paper for reduced-form environmental studies in section 6.

2 Static model of externalities with private adaptation

I build a static model to illustrate how pollutant-intensive adaptation shifts the marginal profit of polluters by altering factor prices. For simplicity, I consider a cutback in producing pollutant-intensive intermediate goods as emissions abatement strategies and abstract from carbon-free technologies. In section 3, I build a dynamic climate-economy model with carbon-free technologies, capital accumulation, and carbon dynamics for quantitative analyses.

2.1 Environment

Household A representative household has preferences over non-durable consumption C, pollution T, and pollutant-intensive goods for private adaptation E^H. For simplicity, I assume quasi-linearity (to be relaxed in section 3). The literature has not reached a consensus on how the shape of the utility function varies with health status (Finkelstein, Luttmer, and Notowidigdo, 2009). I assume state independence of consumption with respect to pollution externalities and focus on the interdependence of private adaptation and pollution as follows

$$u(C, T, E^H) = C - h(T, E^H),$$

where \(\frac{\partial h(T, E^H)}{\partial T} \geq 0 \), \(\frac{\partial^2 h(T, E^H)}{\partial T^2} \geq 0 \), \(\frac{\partial h(T, E^H)}{\partial E^H} \leq 0 \), and \(\frac{\partial^2 h(T, E^H)}{\partial (E^H)^2} \geq 0 \). The household takes T as given, and thus, it is an externality. Utility damages are determined by the pollution level T and adaptation E^H. I consider heat-related discomfort from climate change T and cooling E^H as an example. Still, the framework is general enough to capture a broad set of pollutant-intensive goods for adaptation, such as cement stilts or asphalt shingles. Specifically, I model adaptation as a flow decision. I do not explicitly consider investments in durable goods—such as air conditioners—to focus on the pecuniary effects caused by using energy for cooling. Following the standard practice in the environmental macroeconomics literature, I define T as a change in the global mean surface temperature relative to the pre-industrial level. The population size is normalized to one, and the household supplies one unit of labor inelastically.
Importantly, I assume that the sign of the cross-partial derivative of utility damages with respect to climate T and household energy consumption E^H is nonpositive.

Assumption 1 For any $(T, E^H) \in \mathbb{R}^2$,
\[
\frac{\partial}{\partial E^H} \left(\frac{\partial h(T, E^H)}{\partial T} \right) \leq 0.
\]

This assumption implies that the marginal impacts of climate are smaller when a household takes an additional self-protective measure. It is consistent with the empirical observation that the dose-response relationship between extreme heat events and mortality rates becomes less sensitive as per capita income or long-run average temperature rises, which are vital indicators of private adaptation (Barreca et al., 2016; Heutel et al., 2021; Carleton et al., 2022). As an extreme case, if the cross-partial derivative becomes zero, cooling will lessen damage to utility in level, but the slope of the marginal damage curve will remain unchanged. If the cross-partial derivative is negative, the marginal damage curve becomes flatter as a household increases its energy use for self-protection. Many empirical studies find a similar negative association between key determinants of adaptation and the marginal effect of environmental stresses such as extreme heat events or hurricanes.\(^2\)

In other words, this assumption implies that damage reductions from adaptive responses are more substantial in magnitude with a more drastic change in the climate.\(^3\) It is aligned with the empirical evidence that dose-response relations between extreme heat events and electricity usage become more sensitive as either per capita income or a long-run average temperature rise (Rode et al., 2021; Auffhammer, 2022). Since abating carbon curbs global warming, this complementarity captures how much emissions abatement can be substituted for cooling.

\(^3\)It follows from Young’s theorem that Assumption 1 can be rewritten as $\frac{\partial}{\partial T} \left(-\frac{\partial h(T, E^H)}{\partial E^H} \right) \geq 0$.

8
Production A representative firm in the final goods sector combines labor L^Y and energy E^Y to produce output Y. Its technology F^Y exhibits constant returns to scale with positive and diminishing marginal returns, satisfying the Inada condition

$$Y = F^Y(L^Y, E^Y).$$

(1)

A representative firm in the intermediate goods sector hires labor L^E to generate energy E. The production of energy is linear in labor L^E

$$E = A^E L^E \quad \text{where} \quad A^E > 0.$$

(2)

Both labor and energy are perfectly mobile across the sectors

$$L^Y + L^E = 1 \quad \text{and} \quad E^H + E^Y = E.$$

(3)

Energy can be substituted for any pollutant-intensive intermediate goods such as cement.

Carbon cycle Producing energy yields carbon as its byproduct. I normalize E such that it can be expressed in the same unit of its carbon content. That is, one unit of energy makes one unit of carbon. I assume a linear model of warming with respect to carbon emissions (to be discussed further in section 3)

$$T = \zeta E \quad \text{where} \quad \zeta > 0.$$

(4)

This can be generalized to a relationship between other pollutants and pollution, such as cement production and particulate matter levels in the atmosphere.
2.2 Social planner’s problem

The main goal of this paper is to improve our understanding of the general equilibrium effects of pollutant-intensive adaptation on the marginal profit of polluting firms. I compare the two otherwise identical economies that differ in households’ ability to adapt to uncover the role of pollutant-intensive adaptation on both the external marginal costs and private marginal benefit of pollution.

To provide comparative statics for the changes in the availability of energy as adaptation measures, I generate an objective function with a dummy parameter $\theta \in \{0, 1\}$ as follows

$$d(T, E^H; \theta) = \theta \cdot h(T, E^H) + [1 - \theta] \cdot g(T) = \begin{cases}
 h(T, E^H) & \text{if } \theta = 1 \\
 g(T) & \text{otherwise}
\end{cases}.$$

Here, g denotes the utility damage caused by climate change without private adaptation, which is increasing and convex in T. I assume that marginal climate damages are smaller when a household adapts; $\frac{dg(T)}{dT} \geq \frac{\partial h(T, E^H)}{\partial T}$ for all $(T, E^H) \in \mathbb{R}_+^2$. This parameterization is along the lines of the monotone comparative statics (Milgrom and Shannon, 1994), which allows for a discrete change in parameter space. If $\theta = 1$, households can use energy for space cooling. Otherwise, energy is unavailable as an adaptive measure (benchmark case).

Given $\theta \in \{0, 1\}$, a planner solves the following problem: $\max\{C, T, E^H, L_Y, E_Y, L_E\} C - d(T, E^H; \theta)$ subject to (1),(2),(3),(4), and $C = Y$, as well as nonnegativity constraints for choice variables. Substituting the constraints into the objective function, I can transform the planner’s problem into an unconstrained optimization with two choice variables and one dummy parameter θ

$$\max_{\{L_E, E^H\}} W(L_E, E^H; \theta) = F^Y(1 - L^E, A^E L^E - E^H) - d(\zeta A^E L^E, E^H; \theta).$$

The planner decides how much carbon to release into the atmosphere by adjusting labor in the energy sector L_E while protecting households from climate damages using energy E^H.

10
The first order conditions are given by:

\[
- \theta \cdot \frac{\partial h(T, E^H)}{\partial E^H} = \frac{\partial F^Y(L^Y, E^Y)}{\partial E^Y}, \quad \text{and} \quad (5)
\]

\[
\left[\theta \cdot \frac{\partial h(T, E^H)}{\partial T} + [1 - \theta] \cdot \frac{dg(T)}{dT} \right] \zeta = \left[\frac{\partial F^Y(L^Y, E^Y)}{\partial E^Y} - \frac{\partial F^Y(L^Y, E^Y)}{\partial L^Y} \cdot \frac{1}{A^E} \right]. \quad (6)
\]

Without clean energy, the carbon inventory is one-to-one related to the energy production in the economy, which is determined by employment in the energy sector. Given any \(L^E \in [0, 1] \), the climate \(T \) is determined according to (4). The planner then decides how much energy to allocate for households—\(E^H(L^E) \)—balancing its damage reductions and the losses from foregone consumption as in (5). While taking as given this contingent plan \(E^H(L^E) \), the planner balances the external cost and private benefit from emissions as in (6). If \(\theta = 0 \), only the condition (6) becomes relevant; the planner would not allocate any energy for households.

To examine how efficient allocations change as adaptation becomes relevant \((\theta = 0 \rightarrow 1)\), I use the monotone comparative statics method by Milgrom and Shannon (1994).

Proposition 1 \(W(L^E, E^H; \theta) \) has increasing differences in \((L^E, \theta), (E^H, \theta), \) and \((L^E, E^H)\).

Proof. A function has increasing differences if an incremental return from one argument is larger when the other variable is higher. For any \((L^E, E^H) \in [0, 1] \times \mathbb{R}_+\),

\[
\begin{align*}
\frac{\partial W(L^E, E^H; \theta = 1)}{\partial E^H} - \frac{\partial W(L^E, E^H; \theta = 0)}{\partial E^H} &= -\frac{\partial h(T, E^H)}{\partial E^H} \geq 0 \\
\frac{\partial W(L^E, E^H; \theta = 1)}{\partial L^E} - \frac{\partial W(L^E, E^H; \theta = 0)}{\partial L^E} &= \left[\frac{dg(T)}{dT} - \frac{\partial h(T, E^H)}{\partial T} \right] \zeta A^E \geq 0 \\
\frac{\partial^2 W(L^E, E^H; \theta)}{\partial L^E \partial E^H} &= \left[-\frac{\partial^2 F^Y(L^Y, E^Y)}{\partial (E^Y)^2} + \frac{\partial^2 F^Y(L^Y, E^Y)}{\partial L^H \partial E^Y} \frac{1}{A^E} \right] - \theta \cdot \frac{\partial^2 h(T, E^H)}{\partial E^H \partial T} \zeta \geq 0
\end{align*}
\]

\(\blacksquare \)
Adaptation benefits are positive when it is available as in (7). The returns to fossil fuel use are higher with adaptation as the marginal damage curve becomes flatter with adaptation as in (8). Provided that the economy’s total energy volume is fixed in the short run, transferring some from firms to households for cooling will crowd out energy that can be used to produce other consumption goods. This scarcity raises the marginal profit of carbon-emitting firms via general equilibrium effects on factor prices; energy price increases and wage decreases. When a factor market is competitive, the equilibrium factor price equals its marginal product because arbitrage opportunities do not exist. First, energy scarcity in the final goods sector increases energy prices because of the diminishing marginal product of energy. Second, the energy shortage in the final goods sector makes wages go down because the value of a marginal product of labor declines due to the complementarity between labor and energy. On the other hand, cooling energy modulates the marginal impacts of climate. In sum, adaptation and carbon emissions complement each other as in (9).

Proposition 1 establishes the sufficient condition for monotone comparative statics.

Proposition 2 It follows from monotone comparative statics (Milgrom and Shannon, 1994) that

\[E^H(\theta = 1) \geq E^H(\theta = 0) = 0 \quad \text{and} \quad L^E(\theta = 1) \geq L^E(\theta = 0). \]

When \(\theta = 0 \), the planner would not allocate any energy for households because it decreases output without any benefits. Let \(L^E_0 := L^E(\theta = 0) \) be an optimal labor allocation when adaptation is unavailable. Then, by construction, given any \(l \in [0, L^E_0] \), the planner prefers \(L^E_0 \) to \(l \) under \(\theta = 0 \). That is, the incremental returns to choosing \(L^E_0 \) over \(l \) is always positive under \(\theta = 0 \); \(W(L^E_0, E^H; \theta = 0) - W(l, E^H; \theta = 0) \geq 0 \). It follows from Proposition 1 that these positive incremental returns to emitting more carbon are further sustained even under \(\theta = 1 \). Therefore, even though self-protective measures directly contribute to negative externalities, the planner would never choose lower carbon emissions, which leads to a higher temperature.
The optimal Pigouvian tax is determined where the marginal external cost and private profit from carbon emissions intersect according to the equation (6).

\[
\text{Pigou Tax} = \begin{cases}
\frac{dg(T)}{dT} & \text{if } \theta = 0 \\
\frac{\partial h(T,E_H)}{\partial T} & \text{if } \theta = 1
\end{cases}
\]

On the one hand, adaptation—\(E_H(\theta = 1) \geq 0\)—reduces marginal damages decreasing optimal carbon taxes. On the other hand, an increase in emissions from general equilibrium effects—\(L^E(\theta = 1) \geq L^E(\theta = 0)\)—offsets the direct impact of adaptation, which increases the Pigou tax. In section 3, I provide proof for the optimal carbon taxes that decentralize the efficient allocations in a dynamic climate-economy model with private adaptation.

2.3 A graphical representation of cost-benefit analysis and Pigou taxes

Figure 1 illustrates the intuition of the model's general equilibrium effects using a graphical cost-benefit analysis. As a benchmark, consider an economy without cooling. With no carbon taxes, energy producers will increase their production until their marginal profit becomes zero (point A), which leads to external damages (point B). Now, suppose that energy is available for cooling. Private adaptation reduces the marginal impacts of climate (point C). The crowding-out of industrial energy by residential energy increases energy prices but decreases wages.
Consequently, the profit of carbon-emitting firms rises in the short run (point D). With no carbon taxes, energy producers will increase their production capacity in the long run (point E), which leads to a higher external cost (point F) along the solid line since forward-looking households adapt to an endogenously evolving climate.

In principle, climate externalities can be internalized by regulating carbon emissions at the point where its private marginal net benefit equals its external marginal cost. However, such cost-benefit analyses may not be straightforward with endogenous adaptation because both curves shift. When it comes to optimal climate policies, failing to account for such effects may lead to inefficient levels of emissions. Much of the existing literature has focused on the shift in the marginal damage curve. Specifically, many Integrated Assessment Models (IAMs) implicitly incorporate the costs and benefits of adaptation into a damage function by calibrating it to the least cost combination of residual damage and adaptation costs (Fankhauser, 2017)

\[
\text{Damage}(T) := \arg\min_{E^H} \{ \text{Residual Damage}(T, E^H) + \text{Adaptation Cost}(T, E^H) \}, \quad (10)
\]

where \(T \) is a global mean surface temperature change relative to the pre-industrial level and \(E^H \) is adaptation. But since most of the existing damage functions lump all the relevant welfare effects of adaptive responses into one stylized damage function in a reduced-form way, the previous research has overlooked the general equilibrium effects of pollutant-intensive adaptation on the marginal profit of polluting firms. In this paper, I specify endogenous adaptive decisions in households’ preferences and budget constraints to shed some light on its general equilibrium effects on factor markets. In section 3, I construct a quantitative dynamic climate-economy model with private adaptation using the global mortality costs of climate change and electricity consumption for cooling as an example. I then recalibrate a damage function as in equation (10) to quantify how much of the Pigou tax with endogenous cooling is due to its general equilibrium effects on factor markets (point G to point H in Figure 1).
3 Dynamic climate-economy model with private adaptation

To quantify the role of adaptation in determining optimal carbon taxes, I extend the stylized framework to a much richer dynamic climate-economy model. First, I assume that damages are inversely related to environmental qualities, which is a constant elasticity of substitution aggregate of temperature and cooling energy. Second, I model the technology for producing an energy composite as a constant elasticity of substitution production function of carbon-free and fossil fuel-based energy. Third, I assume that the global mean surface temperature change is linear in the cumulative carbon dioxide emissions. I then characterize optimal carbon taxes in a setting in which the government has access to lump-sum transfers.

Household The economy is populated by an infinitely-lived representative household with the utility function

\[
\sum_{t=0}^{\infty} \beta^t \left[v(C_t) - \left(\theta \cdot h(T_t, E^H_t) + [1 - \theta] \cdot g(T_t) \right) \right],
\]

where

\[
v(C_t) = \frac{C_t^{1-\eta_c}}{1-\eta_c},
\]

\[
h(T_t, E^H_t) = \frac{1}{\eta_h-1} \left(\omega \left(\frac{1}{1+\gamma_h T_t^2} \right)^{1-\rho_h} + [1 - \omega] \left(\epsilon E^H_t \right)^{1-\rho_h} \right)^{1-\eta_h},
\]

and

\[
g(T_t) = \frac{\omega}{\eta_h-1} \left(\frac{1}{1+\gamma_h T_t^2} \right)^{1-\eta_h}.
\]

Here, I consider a power function with constant elasticity of marginal utility for non-durable consumption and climate impacts; \(\eta_c \geq 1 \) and \(\eta_h \geq 1 \). The parameter \(\gamma_h > 0 \) is used to scale gross impacts—ceteris paribus ambient temperature effects that would occur without private adaptation. The parameter \(\epsilon > 0 \) determines the efficiency by augmenting energy use, which reduces the severity of climate impacts. The parameter \(\beta \in (0, 1) \) is the discount factor.
Climate impacts net of adaptation are inversely proportional to ingested environmental quality Q, which I model as a constant elasticity of substitution aggregate of gross impacts and cooling in line with Gerlagh and van der Zwaan (2002) and Hoel and Sterner (2007)

$$Q(T, E^H) = \left(\omega \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \left(e E^H \right)^{1 - \rho_h} \right)^{\frac{1}{1 - \rho_h}}$$

where $\rho_h \in [0, \eta_h]$.

I restrict the parameter space for ρ_h to ensure that the assumptions mentioned above on h in section 2 hold (see the appendix 7.1 for derivations). Carbon mitigation improves ceteris paribus ambient temperature effects by curbing climate change. Therefore, $\frac{1}{\rho_h}$ measures the ease with which the planner can switch between carbon mitigation and private adaptation along an indifference curve. This functional form is general enough to nest a wide range of the climate damages in the literature (see the appendix 7.2 for comparison to other studies).

Note that $g(T_t)$ is a special case of $h(T_t, E^H_t)$ when $\epsilon = 0$ and $\rho_h = \eta_h$.

Let $V_t(K_t, S_t)$ denote the household’s value function in period t with capital K_t and carbon stock S_t. Taking climate and prices as given, the dynastic household solves

$$V_t(K_t, S_t) = \max_{\{C_t, K_{t+1}, E^H_t\}} \left\{ v(C_t) - \left[\theta \cdot h(T_t, E^H_t) + [1 - \theta] \cdot g(T_t) \right] + \beta V_{t+1}(K_{t+1}, S_{t+1}) \right\}$$

subject to

$$C_t + p_t^E E^H_t + K_{t+1} = w_t L_t + [1 + r_t] K_t + G_t,$$

where p_t^E is energy price, w_t is wage, r_t is the rental rate of capital, and G_t is a transfer from the government.
Production I assume that the final and intermediate goods markets are complete. The economy has four types of firms: final goods producers, energy aggregators, carbon-free energy producers, and fossil fuel-based energy producers. I assume that the final goods are produced à la Cobb-Douglas and that output depends on climate change à la Nordhaus (2017)

\[
Y_t = (1 - D(T_t)) \cdot F_t(K_t^Y, L_t^Y, E_t^Y) = \frac{1}{1 + \gamma_y T_t^2} A_t^Y (K_t^Y)^\alpha (L_t^Y)^{1-\alpha} (E_t^Y)^\nu. \tag{12}
\]

A representative firm in the final goods sector solves

\[
\max_{K_t^Y, L_t^Y, E_t^Y} Y_t - p_t E_i^Y - w_t L_t^Y - (r_t + \delta) K_t^Y,
\]

subject to non-negativity constraints, where \(\delta\) is the depreciation rate of capital.

There are two types of energy in the economy: dirty (D) and carbon-free (R). Carbon-free energy is not associated with climate externalities, whereas dirty energy emits carbon into the atmosphere. Energy from a source \(i \in \{D, R\}\) is produced according to the Cobb-Douglas function

\[
E_t^i = G_t^i(K_t^i, L_t^i) = A_t^i (K_t^i)^{\alpha_i} (L_t^i)^{1-\alpha_i}. \tag{13}
\]

I assume that dirty energy is in unlimited supply and its producers do not collect the Hotelling rents à la Golosov et al. (2014), in which they show that when a non-fossil alternative becomes economically profitable in the distant future, coal is not depleted even under laissez-faire equilibria. I calibrate the economy to justify this assumption in section 4. I normalize dirty energy production such that one unit of \(E^D\) generates one unit of carbon. Both renewable and dirty energy is expressed in the same unit.
A representative firm in the energy sector \(i \in \{ R, D \} \) solves

\[
\max_{K^i_t, L^i_t} \left(p^i_t - \tau^i_t \right) E^i_t - w^i_t L^i_t - (r_t + \delta) K^i_t
\]

subject to non-negativity constraints for choice variables, where \(p^i_t \) is the price of energy of type \(i \) and \(\tau^i_t \) is its corresponding per-unit tax on output.

Energy composites are made according to the following constant elasticity of substitution production function

\[
E_t = \left[\kappa_R \left(E^R_t \right)^{\frac{\sigma_e - 1}{\sigma_e}} + \kappa_D \left(E^D_t \right)^{\frac{\sigma_e - 1}{\sigma_e}} \right]^{\frac{\sigma_e}{\sigma_e - 1}} \quad \text{where} \quad \sum_{i \in \{ R, D \}} \kappa_i = 1. \tag{14}
\]

Here, \(\kappa_i \in (0, 1) \) measures the relative energy-efficiency of the source \(i \in \{ R, D \} \), and \(\sigma_e > 0 \) determines the elasticity of substitution between carbon-free and dirty energy along an iso-quant. A representative aggregator solves

\[
\max_{E^R_t, E^D_t} \quad p^E_t E_t - p^R_t E^R_t - p^D_t E^D_t.
\]

Government I assume that the government redistributes carbon tax revenues to households using lump-sum transfer

\[
G_t = \sum_{i \in \{ R, D \}} \tau^i_t E^i_t. \tag{15}
\]
Carbon cycle Most existing Earth System Models—a framework widely used to calculate the state of global and regional earth system responses under various environmental conditions—generate a near proportional relation between the cumulative emissions of carbon dioxide and global mean surface temperature changes over the pre-industrial level (MacDougall, 2017). But it follows from Dietz, van der Ploeg, Rezai, and Venmans (2021) that most of the existing climate models in economics research exhibit excessive delays in temperature responses to emissions and they fail to account for carbon sinks’ declining abilities to remove carbon from the atmosphere as it becomes more saturated. They argue that unless cumulative emissions are too high in the future, a linear mapping will suffice to bring climate dynamics into line with the Earth System Models predictions. Thus, I specify climate change as a linear function of carbon stock

\[T_t = \zeta S_t \quad \text{and} \quad S_{t+1} = S_t + \theta_t E_t^D \quad \text{where} \quad \theta_t = \frac{1}{1 + \exp\left\{-\left(a + 5bt\right)\right\}}. \tag{16} \]

The parameter \(\zeta \) captures the relationship between cumulative emissions and warming, defined as the transient climate response to cumulative carbon emissions (TCRE) by Collins et al. (2013). Following Dietz and Venmans (2019), I assume a relatively short delay—5 years—for the temperature response to carbon emissions. Furthermore, I introduce an exogenously declining emissions intensity à la Golosov et al. (2014). The parameter \(\theta_t \in (0, 1) \) captures the fraction of carbon emitted in period \(t \). This is also consistent with Nordhaus (2017), in which the economy becomes less carbon-intensive even without carbon taxes because abatement costs decline over time due to technological progress. The quantitative implications of this assumption are further discussed in the calibration section.
Let $W_t(K_t, S_t)$ denote a benevolent planner’s value function in period t with capital K_t and carbon stock S_t. Then each period t, the planner solves

$$W_t(K_t, S_t) = \max_{\{C_t, K_{t+1}, L_Y^t, L_R^t, L_D^t, K_Y^t, K_R^t, K_D^t, E^H_t, E^Y_t\}} \left\{ v(C_t) - \left[\theta \cdot h(T_t, E^H_t) + [1 - \theta] \cdot g(T_t) \right] + \beta W_{t+1}(K_{t+1}, S_{t+1}) \right\}$$

subject to (11), (12), (13), (14), (16), and

$$C_t + K_{t+1} = Y_t + (1 - \delta)K_t,$$
$$L_Y^t + L_R^t + L_D^t = 1,$$
$$K_Y^t + K_R^t + K_D^t = K_t,$$
$$E^H_t + E^Y_t = E_t,$$ \hfill (17)

as well as non-negativity constraints for each choice variable. The envelope and the first order conditions are fully characterized in the appendix 7.3.

I define a recursive competitive equilibrium in this economy as follows.

Definition 1 A recursive competitive equilibrium consists of prices $\{p_t^E, w_t, r_t, p_t^R, p_t^D\}$, climate change $\{T_t\}$, tax/transfer $\{\tau_t^R, \tau_t^D, G_t\}$, policy functions $\{C_t, K_{t+1}, E^H_t, E^Y_t, L_Y^t, L_R^t, L_D^t, K_Y^t, K_R^t, K_D^t\}$, and a value function $\{V_t\}$ such that each period $t = 0, 1, 2, \cdots$

1. taking prices, climate change, and tax/transfer as given, the policy functions and the value function solve the households’ and the producers’ maximization problem,

2. the government budget is balanced as in (15),

3. the climate change $\{T_t\}$ is consistent with the policy functions through (16), and

4. the markets clear as in (17).

The envelope and the first order conditions are fully characterized in the appendix 7.3.
Proposition 3 Suppose the government plans to maximize economic efficiency using tax and transfer systems. Then the following output taxes on energy sectors decentralize the first best allocation from the planning problem

\[\tau^R_t = 0 \quad \text{and} \quad \tau^D_t = \begin{cases}
\frac{1}{\nu'(C_t)} \sum_{s=t+1}^{\infty} \beta^{s-t} \left(\frac{dg(T_s)}{dT_s} - v'(C_s) \frac{\partial Y_s}{\partial T_s} \right) \frac{\zeta}{\theta} & \text{if } \theta = 0 \\
\frac{1}{\nu'(C_t)} \sum_{s=t+1}^{\infty} \beta^{s-t} \left(\frac{\partial h(T_s,E_H)}{\partial T_s} - v'(C_s) \frac{\partial Y_s}{\partial T_s} \right) \frac{\zeta}{\theta} & \text{if } \theta = 1
\end{cases} \forall t = 0, 1, \ldots
\]

where policy functions are the solutions for the planning problem.

See the appendix 7.3 for proof. Under the linear warming model, an additional unit of carbon emissions in period \(t \) translates into a temperature rise by \(\zeta \theta \) from period \(t + 1 \) onwards. The optimal tax on dirty energy equals the sum of the present values of all future climate impacts discounted by the marginal utility of non-durable consumption in period \(t \). Adaptation makes the marginal damage curve flatter, lowering Pigouvian carbon taxes. On the other hand, a rise in temperature from general equilibrium effects increases optimal carbon taxes because the damage function \(h \) is convex in \(T \).

4 Calibration

I calibrate the model’s laissez-faire equilibrium to match the projected impacts of climate change on heat-related mortality costs and electricity consumption under a high emissions scenario (Representative Concentration Pathway [RCP] 8.5); for details of this scenario, see Riahi et al. (2011). I choose this scenario because it does not include any carbon mitigation targets, which corresponds to the model’s competitive equilibrium with no carbon taxes. I calibrate six parameters \(\{\gamma_h, \epsilon, 1/\rho_h, \omega, a, b\} \) to justify some recent reduced-form evidence on the benefits and costs of the use of energy for cooling (Rode et al., 2021; Carleton et al., 2022). I adopt other parameters directly from the existing literature. The time step is five years. The year 2015 is a base period \((t = -1) \), and simulations begin in 2020 \((t = 0) \).
Using the external parameters in Table 2, I relate my model to some observables in the base period to initialize allocations. The 2015 world gross saving rate is used to calculate the base-period non-durable consumption. The 2016 world final energy consumption for space cooling is used to calculate the base-period household cooling energy, which is about 3% of the world’s total primary energy use (IEA, 2018a). The 2014 primary global fossil fuel-based energy demand was 11.085 Giga tons of oil equivalents of coal, oil, and gas. The 2014 primary global carbon-free energy demand was 2.599 Giga tons of oil equivalents of nuclear, hydro, bioenergy, and other renewables (IEA, 2016). Using the guidelines on national greenhouse gas inventories by IPCC (2006), I express the energy demand in carbon units.

4.1 Internal parameters

Preferences Carleton et al. (2022) find that ceteris paribus effects of climate change on global heat-related mortality costs in 2100 are projected to be 221 deaths per 100,000 people under the RCP8.5, which is about 8.32% of the 2100 world gross domestic product. I calibrate the parameter γ_h such that the model-simulated disutility caused by climate change from 2015 to 2100 without cooling equals the utility loss from 8.32% consumption

$$g(T_{2015}) - g(T_{2100}) = v(C_{2100}) - v([1 - 0.0832]C_{2100}).$$
(Ceteris paribus climate impacts)

In addition, Carleton et al. (2022) project that the mortality costs net of adaptation benefits are expected to be 73 deaths per 100,000 people, which is about 5.57% of the 2100 world gross domestic product. I calibrate the parameter ρ_h such that the model-simulated adaptation benefits match the empirical moments as follows

5 Carleton et al. (2022) report climate damages as a percentage of global GDP only for the full mortality costs of climate change that include both the benefits and costs of adaptation. To calculate the ceteris paribus climate impacts as a percentage of global GDP, I assume that both benefits and costs of adaptation occur proportionally to all age groups.
\[
\frac{h_{\text{max}}(T_{2100}, E_{2100}^H) - h(T_{2100}, E_{2100}^H)}{h_{\text{max}}(T_{2100}, E_{2100}^H) - h_{\text{min}}(T_{2100}, E_{2100}^H)} = \frac{\nu(C_{2100}) - \nu([1 - 0.0557]C_{2100})}{\nu(C_{2100}) - \nu([1 - 0.0832]C_{2100})},
\]

(Adaptation benefits)

where \(h_{\text{max}} \) equals to \(h \) when \(1/\rho_h = 1/\eta_h \) and \(h_{\text{min}} \) equals to \(h \) when \(1/\rho_h \to \infty \). If cooling reduces deaths by 221 per 100,000 people, then the parameter \(1/\rho_h \) becomes infinity. If there are no cooling benefits, the parameter \(1/\rho_h \) equals its lower bound \(1/\eta_h \).

The parameter \(\omega \) governs the efficiency of greenhouse gas abatement efforts relative to space cooling in determining an environmental quality \(Q \). All else being equal, as \(\omega \) increases, households need to use more energy to attain the same level of well-being. Rode et al. (2021) project future global electricity consumption relative to 2000-2010 under the RCP8.5. Using the standard two-way fixed effects model, they first identify a causal effect of temperature fluctuations on electricity consumption. They allow their dose-response functions to become steeper as either the long-run average temperature or income per capita rises, which are two key adaptation indicators. It is worth noting that their projection does not include secular trends in energy consumption, but it just captures an increase in electricity usage attributable to climate change.\(^6\)

Therefore, I calibrate the parameter \(\omega \) such that the changes in the model-simulated cooling energy net of secular trends match the changes in electricity consumption projections in Rode et al. (2021), which is 1.21 Giga joule per capita per year by the end of this century. I multiply this estimate by the 2015 world population to derive climate-driven cooling loads, which is 3.3214 Giga ton of CO\(_2\) per period. To derive the secular trends of household energy consumption, I simulate the competitive equilibrium without climate externalities.

\[
\left[E_{2100}^H - E_{2015}^H \right] - \left[E_{2100}^{H, \text{Secular}} - E_{2015}^H \right] = 3.3214
\]

(Climate-driven cooling demands)

\(^6\)In projecting the impact of climate change on future energy consumption, Rode et al. (2021) do not include time fixed effects. This is because the standard two-way fixed effects model estimates time fixed effects non-parametrically, and it is impossible to extrapolate them.
Lastly, I calibrate the parameter ϵ such that the marginal rate of substitution between C and E^H equals its price ratio in the base year. It is worth noting that Carleton et al. (2022) identify the benefits of adaptation by estimating reduced mortalities to weather fluctuations, which result from all of the actions people take to alleviate their mortality costs. In calibration, I assume that all the benefits result from using energy for cooling.

Climate model I introduce a declining emissions intensity $\{\theta_t\}$ so that a temperature change can reach a steady state in the distant future à la Golosov et al. (2014). This assumption serves to validate the linear warming model. At high cumulative emissions, the transient climate response to cumulative carbon emissions (TCRE) is no longer constant, and it starts to decline (MacDougall, 2017; Dietz et al., 2021). I set $a = 8$ and calibrate b such that the atmospheric carbon concentration in laissez-faire converges to five trillion tons of carbon, which validates the TCRE parameter in Tokarska et al. (2016). Five trillion tons of carbon also corresponds to the lower end of the range of estimates of the total fossil fuel resource (IEA, 2013). Therefore, my calibration justifies the assumption of an unlimited supply of fossil fuel-based energy since the depletion of fossil fuels does not arise.

I numerically solve for the model’s laissez-faire equilibrium to match all the moments jointly. Model-simulated moments are compared to the empirical moments in Table 1, and the resulting parameter values are summarized in Table 2. In both Carleton et al. (2022) and Rode et al. (2021), the median warming in 2100 relative to 2001-2010 under the RCP8.5 across all the climate models both studies consider is $3.7^\circ C$. A simulated temperature change in 2100 relative to 2015 is about $3.6^\circ C$ in the laissez-faire equilibrium. The computational procedures are provided in the appendix 7.4.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Model-simulated</th>
<th>Empirical</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceteris paribus climate impacts on mortality (% of world GDP)</td>
<td>8.32</td>
<td>8.32</td>
<td>Carleton et al. (2022)</td>
</tr>
<tr>
<td>Mortality reduction due to cooling (% of world GDP)</td>
<td>5.57</td>
<td>5.57</td>
<td>Carleton et al. (2022)</td>
</tr>
<tr>
<td>Climate-driven cooling demands (giga ton of CO$_2$)</td>
<td>3.3215</td>
<td>3.3214</td>
<td>Rode et al. (2021)</td>
</tr>
<tr>
<td>Asymptotic cumulative carbon emissions (giga ton of carbon)</td>
<td>4,889</td>
<td>5,000</td>
<td>Tokarska et al. (2016)</td>
</tr>
</tbody>
</table>

Table 1: Model’s fit for targeted moments
<table>
<thead>
<tr>
<th>Preferences</th>
<th>Description</th>
<th>Sources and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_c</td>
<td>2 Elasticity of marginal utility of consumption</td>
<td>Weitzman (2007)</td>
</tr>
<tr>
<td>η_h</td>
<td>2 Elasticity of marginal utility of environmental quality</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>(0.985)5 Discount factor</td>
<td>Nordhaus (2017)</td>
</tr>
<tr>
<td>γ_h</td>
<td>8.680e-05 Utility damage</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>2.0700 Effectiveness of adaptation</td>
<td></td>
</tr>
<tr>
<td>$1/\rho_h$</td>
<td>0.5601 Substitutability between abatement and adaptation</td>
<td>Internally calibrated</td>
</tr>
<tr>
<td>ω</td>
<td>0.0214 Relative efficiency</td>
<td>Internally calibrated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Sources and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_f</td>
<td>.0021 Production damage</td>
<td>Barrage (2020b)</td>
</tr>
<tr>
<td>a</td>
<td>0.3 Capital expenditure share in final good sector</td>
<td>Golosov et al. (2014)</td>
</tr>
<tr>
<td>ν</td>
<td>0.04 Energy expenditure share in final good sector</td>
<td>Golosov et al. (2014)</td>
</tr>
<tr>
<td>α_R</td>
<td>0.597 Capital expenditure share in renewable energy sector</td>
<td>Barrage (2020b)</td>
</tr>
<tr>
<td>σ_e</td>
<td>1.949 Substitutability between dirty and renewable energy</td>
<td></td>
</tr>
<tr>
<td>κ_R</td>
<td>0.442 Relative energy efficiency of renewable energy source</td>
<td>Papageorgiou et al. (2017)</td>
</tr>
<tr>
<td>κ_D</td>
<td>0.558 Relative energy efficiency of dirty energy source</td>
<td>Papageorgiou et al. (2017)</td>
</tr>
<tr>
<td>δ</td>
<td>0.4095 Capital depreciation rate</td>
<td>Nordhaus (2017)</td>
</tr>
<tr>
<td>gA^R_t</td>
<td>0.076 Initial growth rate in output productivity</td>
<td>Nordhaus (2017)</td>
</tr>
<tr>
<td>δ_R</td>
<td>0.005 Decline rate in productivity growth</td>
<td>Nordhaus (2017)</td>
</tr>
<tr>
<td>gA^D_t</td>
<td>$gA^R_t \exp(-5\delta_R(t-1))$</td>
<td>Nordhaus (2017)</td>
</tr>
<tr>
<td>gA^C_t</td>
<td>Growth rate in clean energy sector productivity</td>
<td>$(1 + gA^C_t \frac{1}{1-\alpha})^{1-\alpha} - 1$</td>
</tr>
<tr>
<td>gA^D_t</td>
<td>Growth rate in dirty energy sector productivity</td>
<td>$(1 + gA^D_t \frac{1}{1-\alpha})^{1-\alpha} - 1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate model</th>
<th>Description</th>
<th>Sources and notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ</td>
<td>1.63e-03 Transient climate response to cumulative carbon emissions (°C per giga ton of carbon)</td>
<td>Tokarska et al. (2016)</td>
</tr>
<tr>
<td>θ_t</td>
<td>$[1 + \exp(-{a + 5b , t})]^{-1}$</td>
<td>Golosov et al. (2014)</td>
</tr>
<tr>
<td>a</td>
<td>8</td>
<td>Internally calibrated</td>
</tr>
<tr>
<td>b</td>
<td>-.0798</td>
<td>Internally calibrated</td>
</tr>
</tbody>
</table>

Table 2: Calibration Summary

4.2 External parameters

Climate model The atmospheric carbon concentration in 2015 is from Nordhaus (2017). The transient climate response to cumulative carbon emissions (TCRE) is set to 0.00163 °C per Giga ton of carbon from Tokarska et al. (2016).

Preferences I assume that the elasticity of marginal utility equals 2 for both non-durable goods and environmental qualities. The rate of pure time preference is set to be 0.015 per year, or $\beta = (0.985)^5$ in the quantitative model in line with Nordhaus (2017).
Technology Following Golosov et al. (2014), I assume a capital expenditure share of 0.3 and an energy income share of 0.04 for the final goods sector. Based on Barrage (2020b), I assume a capital expenditure share of 0.597 in both fossil fuel-based and carbon-free energy sectors. Following Papageorgiou, Saam, and Schulte (2017), I set the elasticity of substitution between renewable and dirty energy to be 1.949 and the relative efficiency of renewable energy to be 0.442. The capital depreciation rate is set to 0.1 per year, or $\delta = 0.4095$ in the quantitative model in line with Nordhaus (2017). The path of total factor productivity is also taken from Nordhaus (2017). The productivity in both dirty and renewable energy sectors is set such that the labor augmenting technological progress is the same across all sectors.

5 Quantitative results

I use the calibrated model to quantify the economic impacts of heat-related mortalities and ensuing adjustments in cooling. First, I quantify the general equilibrium effects of cooling on factor markets in competitive equilibria. Second, I quantify the impact of adaptation-driven general equilibrium effects on the mortality social costs of carbon. Third, I compare household saving with and without cooling in the first-best to quantify ex-ante adaptation to climate change. Fourth, I examine the welfare impacts of exogenous advances in cooling technology.

5.1 General equilibrium effects of cooling on factor markets

To isolate the general equilibrium effects of household energy consumption for cooling on the marginal profit of dirty energy producers, I compare competitive equilibrium allocations from the two otherwise identical economies that differ in households ability to adapt. When I do not include endogenous adaptive decisions in utility and resource constraints, adaptation-driven general equilibrium effects do not arise. Therefore, I attribute an increase in factor shares in the dirty energy sector to the general equilibrium effects of cooling on factor prices.

Figure 2 compares the simulated paths of competitive equilibrium allocations with cool-
Figure 2: General equilibrium effects of cooling on factor markets in competitive equilibria

Each panel compares the time paths of competitive equilibrium allocations with cooling to the ones without adaptation as output taxes on the dirty energy sector (τ_D) vary. I solve for the optimal carbon taxes with endogenous adaptation (τ^*). I then solve for competitive equilibria when τ_D equals to x% of τ^* where x ∈ {0, 25, 50, 75, 100}. Note that I convert all the energy sources into tonnes of oil equivalent and then convert them into CO_2 for presentation. Panel (A): The use of energy for cooling. Panel (B): The difference in CO_2 emissions per period. Panel (C): The difference in capital share in the dirty energy sector. Panel (D): The difference in labor share in the dirty energy sector.

I solve for the socially optimal allocation to derive the optimal carbon taxes—{τ_i^*}—change. I then solve for competitive equilibria when {τ_i^*} equals to x% of {τ_i^*} where x ∈ {0, 25, 50, 75, 100}. Panel (A) shows that as output taxes on the dirty energy sector vary from optimal carbon taxes to zero taxes, the time path of cooling shifts up. For example, when there are no carbon taxes, about 21 Giga tons of CO_2—3.4% of energy—will be used for cooling in 2100. Having less regulation in dirty sectors leads to more emissions. Because of the nonseparability between environmental quality and cooling, a higher temperature change makes household demand more energy for cooling. Note that equilibrium cooling is not zero when the government imposes optimal carbon taxes. This is because the planner reduces carbon until its private marginal benefit equals its external marginal costs, which leads to non-zero carbon emissions. Since the efficient pollution level is not zero, efficient cooling does not equal zero either.

In response to endogenous cooling, the dirty energy sector’s marginal profit shifts be-
cause of an increase in market demand. If there were no shifts, factor shares between the two economies should be the same. Panels (C) and (D) show that the differences in factor shares in the dirty energy sector increase as output tax rates for the dirty sector decline. For example, when there are no carbon taxes, the share of capital and labor in the dirty energy sector will increase by about 0.17 percentage points and about 0.06 percentage points by the end of this century. This is because increases in cooling loads due to a higher temperature amplify general equilibrium effects. In response to increases in factor shares in the dirty energy sector, emissions also increase as output tax rates decline for the dirty energy sector, as in Panel (B). For example, when there are no carbon taxes, emissions per period increase by about 33.3 Giga ton of CO$_2$ in 2100, equivalent to 3.2% of global greenhouse gas emissions in 2100.

5.2 General equilibrium effects of cooling on Pigou taxes

To quantify the general equilibrium effects of cooling on optimal climate policies, I compare the Pigou tax with endogenous cooling to the case in which a damage function is recalibrated to the least cost combination of residual damage and adaptation costs (point G to point H in Figure 1). When adaptation is implicit in a damage function, general equilibrium effects do not arise because household energy consumption does not appear in resource constraints.

Figure 3 shows the global mean surface temperature change over the pre-industrial level and mortality social costs of carbon in the first-best. To compare the simulated outcomes with endogenous cooling to the ones with implicit adaptation, I use upward-pointing triangle and circle symbols, respectively. In the social optima, the equilibrium temperature change is higher with endogenous cooling (Panel A of Figure 3). This is because the marginal profit of fossil fuel-based energy producers shifts up. Since increased profits flow back to the households’ budget constraint, the planner increases optimal carbon emissions. Equilibrium temperature keeps going up over time in both cases because it is linear in the cumulative carbon emissions.
Figure 3: Simulated paths of climate change and Pigou tax correcting heat-related discomfort
Each panel compares the time paths of the first-best allocations with endogenous adaptation to the ones with implicit adaptation.

The social cost of carbon in this environment is defined as the present discounted sum of climate externalities that would result from emitting an additional ton of carbon dioxide. To highlight the general equilibrium effects of endogenous cooling, I isolate the mortality social costs of carbon from the social cost of carbon that additionally includes production damages. In the social optima, the mortality social cost of carbon is higher with endogenous cooling (Panel B of Figure 3) because of cooling-driven upward shifts in the marginal profit of dirty energy producers. It follows from Proposition 3 that efficient allocations can be fully decentralized when the government prices carbon at its social cost in the first-best solution of the model. For example, when I account for endogenous cooling, Pigou tax correcting for mortality costs increases by about 7% for the base period (2020).
5.3 Saving as ex-ante adaptation

Fankhauser, Smith, and Tol (1999) claim that it is crucial to distinguish between anticipatory (ex-ante) and reactive (ex-post) adaptation. In this paper, I model adaptation as an ex-post flow decision variable using residential energy for cooling. I do not explicitly consider investments in durable goods such as air conditioners. Despite my modeling assumption on adaptive measures, using energy for cooling has intertemporal implications via saving. In the social optima, the household saving in 2020 increases by 0.09% with endogenous cooling. Consequently, capital stock rises by 0.1% with endogenous cooling by the end of this century, which implies household energy expenditures due to climate change do not divert resources from productive capital accumulation. Equilibrium temperature keeps rising over time since it is proportional to the cumulative carbon emissions. As a result, as soon as cooling energy is available as a self-protective measure, households derive higher utility from converting the marginal unit of final goods to the very first unit of cooling services in the following period compared to the current period. This is because avoided damages from cooling are higher when the climate is worse, providing higher incentives to save, all else equal.

5.4 Welfare impacts of advances in cooling technology

Energy efficiency improvements have received attention in the global discourse on climate change as an effective greenhouse gas mitigation strategy (IEA, 2018b). Yet, such advances can create income from energy savings and potentially lead to increased energy use, referred to as “rebound” effects in the energy efficiency literature (Borenstein, 2015; Lemoine, 2020). I use the calibrated model to see if such rebound effects more than offset the energy savings from technological advances. In particular, I examine the competitive equilibria with no carbon taxes to focus on the role of energy efficiency improvements as a greenhouse gas mitigation strategy in the worst case. In this paper, I consider an increase in the efficacy of cooling at reducing marginal damages via the parameter $1/\rho_h$.
Table 3: Welfare impacts of the advances in cooling technology

Table 3 summarizes the welfare impacts of such technological advances in cooling. A 0.1% increase in the efficacy of cooling at reducing marginal damages \((1/\rho_h)\) boosts energy use by about 1% in the year 2100, which means that rebound effects reverse energy savings. Thus, related general equilibrium effects also increase, leading to higher carbon emissions. But the benefits of cooling from the enhanced efficacy dominate the unintended consequences, which decreases the mortality social cost of carbon from $202 per ton of CO\(_2\) to $199 per ton of CO\(_2\) in 2010 USD by the end of this century.

To convert the decrease in the mortality social cost of carbon into more interpretable units, I compute the constant consumption stream \(w\) a household must receive to attain the lifetime utility à la Bénabou (2002)

\[
\frac{1}{1-\beta} \frac{w^{1-\eta_c}}{1-\eta_c} = \sum_{t=0}^{\infty} \beta^t \left[v(C_t) - h(T_t, E_H^t) \right].
\]

A 0.1% increase in the parameter \(1/\rho_h\) provides welfare gains that are equivalent to about 1% of consumption for households. Therefore, even though rebound effects overturn the direct energy efficiency gains leading to a worse climate, the enhanced cooling services more than offset this vicious cycle effects providing welfare gains.
Figure 4: Differences of factor shares in the dirty sector and per period emissions in 2020

Each panel compares the laissez-faire allocations with cooling to the ones without adaptation in 2020 as the elasticity of marginal utility changes from 1.45 to 2.5 relative to the baseline calibration ($\eta_c = 2$).

5.5 Sensitivity analysis

The central theoretical insight in this paper is that cooling-driven energy scarcity increases the marginal benefit of fossil fuel use by changing factor prices, which are determined by their marginal products in a competitive factor market. Here, I examine the robustness of adaptation-driven general equilibrium effects to alternative assumptions on the elasticity of marginal utility—η_c. Figure 4 shows the difference of factor shares in the dirty sector between the laissez-faire with endogenous cooling and the laissez-faire without cooling across a range of parameter values. I find that the general equilibrium effects align with the baseline quantitative analysis.
6 Summary and concluding remarks

This paper develops a theory of how pollutant-intensive adaptation affects optimal Pigou taxes. The most apparent effect, highlighted previously in the literature, is that adaptation reduces the external marginal costs of pollution; this effect always decreases optimal pollution taxes. However, I show that adaptation using pollutant-intensive intermediate goods comes with unintended consequences on factor prices. An increase in demand for pollutant-intensive inputs raises the marginal profit of polluting industries. This second effect works in the opposite direction and increases the optimal pollution price. As a stylized example, I use a macroeconomic climate-economy model with heat-related discomfort and cooling energy. I find that about 7% of the Pigouvian tax for correcting heat-related mortality is due to the unintended warming caused by the use of energy for cooling for the base period.

The theoretical insight in this paper provides a guiding principle in interpreting reduced-form studies on adaptation to derive their policy implications. It is becoming more popular, in econometric analyses, to account for adaptation by allowing the dose-response relation between economic outcomes and weather fluctuations to depend on the long-run average temperature and per capita income, which are vital indicators of adaptation (see Kolstad and Moore (2020) for a review). Policymakers should be concerned about general equilibrium effects when potential mechanisms explaining the benefit of adaptation are from carbon-intensive intermediate goods. In such cases, a back-of-the-envelope calculation based on engineering-based or partial equilibrium pollution abatement costs could prescribe a lower-than-optimal tax rate.

Lastly, I conclude with a discussion of potential extensions of my model for future research. First, while a multi-sector growth model with various energy sources as intermediate goods elucidates the general equilibrium effects of private adaptation, additional efforts need to be undertaken to generalize the framework to a multi-sector model with input-output linkages.
Adaptive behaviors that can lead to increased greenhouse gas emissions include, but are not limited to, cooling energy. The macroeconomic literature on production networks can provide a valuable framework to examine the transmission of such risks over the input-output networks. Second, future research should probe the distributional effects of climate-driven adaptation. In this paper, I focus on the wedge between potential and realized exposures to climate change, which is driven by the self-protective behaviors of a representative household. But economically disadvantaged people may not enjoy the same benefits because of their lack of resources to adapt to even worse climate conditions caused by wealthy households’ adjustments to climate change. The heterogeneous agent macro model with idiosyncratic income shocks can be a helpful framework for designing climate policies that reduce both carbon emissions and inequality among households.
7 Appendix

7.1 Regularity conditions on h

Given any $(T, E^H) \in \mathbb{R}_+^2$, if $\eta_h \geq 1$, $\rho_h \in [0, \eta_h]$, and γ_h is small enough,

\[
\frac{\partial h(T, E^H)}{\partial T} = \omega \cdot \frac{2 \gamma_h T}{(1 + \gamma_h T^2)^2 - \rho_h} \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} > 0
\]

\[
\frac{\partial^2 h(T, E^H)}{\partial (T^2)} = 2 \omega \gamma_h \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} - 2 \rho_h \cdot \omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + \eta_h [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h}
\]

\[
\frac{\partial h(T, E^H)}{\partial E^H} = -[1 - \omega] \cdot \frac{\epsilon}{(\epsilon E^H)^{\rho_h}} \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} < 0
\]

\[
\frac{\partial^2 h(T, E^H)}{\partial (E^H)^2} = [1 - \omega] \cdot \frac{\epsilon^2}{(\epsilon E^H)^{\rho_h}} \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} - \frac{2 \gamma_h T}{(1 + \gamma_h T^2)^2 - \rho_h} \cdot \frac{\epsilon}{(\epsilon E^H)^{\rho_h}}
\]

\[
\times \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} > 0
\]

\[
\frac{\partial^2 h(T, E^H)}{\partial T \partial E^H} = -[\eta_h - \rho_h] \cdot \omega \cdot [1 - \omega] \cdot \frac{2 \gamma_h T}{(1 + \gamma_h T^2)^2 - \rho_h} \cdot \frac{\epsilon}{(\epsilon E^H)^{\rho_h}}
\]

\[
\times \left(\omega \cdot \left(\frac{1}{1 + \gamma_h T^2} \right)^{1 - \rho_h} + [1 - \omega] \cdot (\epsilon E^H)^{1 - \rho_h} \right)^{\frac{1 - \eta_h}{1 - \rho_h}} < 0
\]
7.2 Climate damage functions in the literature

The specification in section 3 nests a wide range of damage functions that have been used to study the role of adaptation in the literature.

1. When $\rho_h \to 1$, the environmental quality Q becomes multiplicative (de Bruin et al., 2009; Bosello, 2010; Bosello et al., 2010; Bréchet et al., 2013; Millner and Dietz, 2015; Barrage, 2020a; Fried, 2021);

$$h(T, E^H) = \frac{1}{\eta_h - 1} \left(\left(\frac{1}{1 + \gamma_h T^2} \right)^\omega \left(e^{E^H} \right)^{1-\omega} \right)^{1-\eta_h}.$$

2. When $\rho_h \downarrow 0$, the environmental quality Q becomes additive (Bretscher and Valente, 2011; Zemel, 2015):

$$h(T, E^H) = \frac{1}{\eta_h - 1} \left(\omega \left(\frac{1}{1 + \gamma_h T^2} \right) + [1-\omega] \left(e^{E^H}\right)^{1-\eta_h} \right).$$

3. When $\rho_h \uparrow \eta_h$, the climate impacts h become separable in T and E^H;

$$h(T, E^H) = \frac{\omega}{\eta_h - 1} \left(\frac{1}{1 + \gamma_h T^2} \right)^{1-\eta_h} + \frac{1-\omega}{\eta_h - 1} \left(e^{E^H}\right)^{1-\eta_h}. $$
7.3 Proof for proposition 3

Consider the planner’s problem in Section 3. It follows from the Envelope theorem that

\[\frac{\partial W_t}{\partial K_t} = v'(C_t) \left[1 - \delta + \frac{\partial Y_t}{\partial K_t} \right], \quad \text{and} \]

\[\frac{\partial W_t}{\partial S_t} = -\left[\theta \cdot \frac{\partial h(T_t, E_{i}^H)}{\partial T_t} + (1 - \theta) \cdot \frac{dg(T_t)}{dT_t} \right] \zeta + v'(C_t) \frac{\partial Y_t}{\partial T_t} \zeta + \beta \frac{\partial W_{t+1}}{\partial S_{t+1}}. \]

(Envelope condition for \(S_t \))

Given \(i \in \{R, D\} \), let \(\mathcal{J}_i := \kappa_i \left(E_i^l \right)^{\delta_{i \varepsilon}} \left\{ \kappa_R \left(E_R^l \right)^{\delta_{R \varepsilon}} + \kappa_D \left(E_D^l \right)^{\delta_{D \varepsilon}} \right\} \). Using the envelope condition for \(K_t \), the first order conditions can be written as follows;

\[v'(C_t) = \beta v'(C_{t+1}) \left[1 - \delta + \frac{\partial Y_{t+1}}{\partial K_{t+1}} \right], \]

\[-\frac{\partial Y_t}{\partial L_t} + \frac{\partial Y_t}{\partial E_t} E_t \mathcal{J}_D \frac{1}{E_t^l} \frac{\partial E_t^D}{\partial L_t} = -\beta \frac{1}{v'(C_t)} \frac{\partial W_{t+1}}{\partial S_{t+1}} \theta_t \frac{\partial E_t^D}{\partial L_t}, \]

\[\frac{\partial Y_t}{\partial K_t} + \frac{\partial Y_t}{\partial E_t} E_t \mathcal{J}_R \frac{1}{E_t^l} \frac{\partial E_t^R}{\partial K_t} = 0, \]

\[-\frac{\partial Y_t}{\partial K_t} + \frac{\partial Y_t}{\partial E_t} E_t \mathcal{J}_D \frac{1}{E_t^l} \frac{\partial E_t^D}{\partial K_t} = -\beta \frac{1}{v'(C_t)} \frac{\partial W_{t+1}}{\partial S_{t+1}} \theta_t \frac{\partial E_t^D}{\partial K_t}, \]

\[\frac{\partial Y_t}{\partial K_t} + \frac{\partial Y_t}{\partial E_t} E_t \mathcal{J}_R \frac{1}{E_t^l} \frac{\partial E_t^R}{\partial K_t} = 0, \]

and

\[-\frac{\partial h(T_t, E_{i}^H)}{\partial E_t} = v'(C_t) \frac{\partial Y_t}{\partial E_t}. \]

Now, consider the competitive equilibrium. It follows from the Envelope theorem that

\[\frac{\partial V_t}{\partial K_t} = v'(C_t) [1 + r_t]. \]

(Envelope condition for \(K_t \))
Using the envelope condition for K_t, the first order conditions can be written as follows;

$$\left[p^i_t - \tau^i_t\right] \frac{\partial E^i_t}{\partial K^i_t} = r_t + \delta \quad \forall i \in \{R, D\},$$

$$\left[p^i_t - \tau^i_t\right] \frac{\partial E^i_t}{\partial L^i_t} = w_t \quad \forall i \in \{R, D\},$$

$$P_t E^i_t \frac{1}{E^i_t} = p^i_t \quad \forall i \in \{R, D\},$$

$$\frac{\partial Y_t}{\partial K^y_t} = r_t + \delta,$$

$$\frac{\partial Y_t}{\partial L^y_t} = w_t,$$

$$\frac{\partial Y_t}{\partial E^y_t} = p_t,$$

$$v'(C_t) = \beta v'(C_{t+1})[1 + r_{t+1}],$$

and

$$\frac{\partial h(T_t, E^H_t)}{\partial E^i_t} = v'(C_t)p_t.$$

By substituting prices, the first order conditions can be rewritten as follows:

$$v'(C_t) = \beta v'(C_{t+1})\left[1 - \delta + \frac{\partial Y_{t+1}}{\partial K^y_{t+1}}\right],$$

$$\frac{\partial Y_t}{\partial L^y_t} + \frac{\partial Y_t}{\partial E^y_t} E^D_t \frac{1}{E^D_t} \frac{\partial E^D_t}{\partial L^D_t} = \tau^D \frac{\partial E^D_t}{\partial L^D_t},$$

$$\frac{\partial Y_t}{\partial L^y_t} + \frac{\partial Y_t}{\partial E^y_t} E^R_t \frac{1}{E^R_t} \frac{\partial E^R_t}{\partial L^R_t} = \tau^R \frac{\partial E^R_t}{\partial L^R_t},$$

$$\frac{\partial Y_t}{\partial K^y_t} + \frac{\partial Y_t}{\partial E^y_t} E^D_t \frac{1}{E^D_t} \frac{\partial E^D_t}{\partial K^D_t} = \tau^D \frac{\partial E^D_t}{\partial K^D_t},$$

$$\frac{\partial Y_t}{\partial K^y_t} + \frac{\partial Y_t}{\partial E^y_t} E^R_t \frac{1}{E^R_t} \frac{\partial E^R_t}{\partial K^R_t} = \tau^R \frac{\partial E^R_t}{\partial K^R_t},$$

and

$$\frac{\partial h(T_t, E^H_t)}{\partial E^i_t} = v'(C_t) \frac{\partial Y_t}{\partial E^y_t}.$$
Two sets of the first order conditions from planning problem and competitive equilibriums are equivalent if and only if

\[\tau^R_t = 0 \quad \text{and} \quad \tau^D_t = -\beta \frac{1}{v'(C_t)} \frac{\partial W_{t+1}}{\partial S_{t+1}} \theta_t. \]

Using the envelope condition for \(S_t \) and iteration, \(\tau^D_t \) can be rewritten as follows:

\[
\tau^D_t = \begin{cases}
\frac{1}{v'(C_t)} \sum_{s=t+1}^{\infty} \beta^{s-t} \left(\frac{d g(T_s)}{d T_s} - v'(C_s) \frac{\partial Y_s}{\partial T_s} \right) \theta_t & \text{if } \theta = 0 \\
\frac{1}{v'(C_t)} \sum_{s=t+1}^{\infty} \beta^{s-t} \left(\frac{\partial h(T_s, E_{t,s})}{\partial T_s} - v'(C_s) \frac{\partial Y_s}{\partial T_s} \right) \theta_t & \text{if } \theta = 1
\end{cases} \quad \forall t = 0, 1, \ldots
\]

7.4 Computation

The main computational challenge in my setting is that atmospheric carbon concentrations do not stabilize over time because carbon stock does not depreciate in a linear warming model. Furthermore, productivities systematically evolve over time. Therefore, associated value and policy functions depend on state and time. Moreover, it is impossible to convert this environment into a stationary one using labor augmenting technological progress because climate change is inversely related to utility in a quadratic fashion. To solve this problem, I combine the Extended Function Path approach by Maliar, Maliar, Taylor, and Tsener (2020) with the Envelope Condition Method by Maliar and Maliar (2013) and Arellano, Maliar, Maliar, and Tsyrennikov (2016). Maliar et al. (2020) show that if we are interested in the evolution of an infinite-horizon nonstationary economy during the first \(t_0 \) periods, we can approximate its solution by solving a truncated problem. This method relies on the turnpike theorem that the convergence of a truncated economy to the corresponding infinite-horizon one is insensitive to a large enough terminal date (\(T \)) and specific terminal conditions.
In this paper, I derive the optimal Pigouvian carbon taxes with adaptation towards the end of this century \((t_0 = 17)\). I set a large enough terminal period \(T = 100\) (500 years) to reduce approximation errors. I assume technological progress becomes stationary in the terminal period \(T\) and constructs a stationary solution. Given the terminal conditions, I solve the Bellman equations by backward inductions and construct a sequence of time-inhomogeneous policy functions. Starting from an observable initial state, I simulate the economy forward and derive the optimal carbon taxes with adaptation.
References

